
1/3

August 24, 2004

Beware of non-null-terminated registry strings
devblogs.microsoft.com/oldnewthing/20040824-00

Raymond Chen

Even though a value is stored in the registry as REG_SZ,
this doesn’t mean that the value

actually ends with a proper
null terminator. At the bottom, the registry is just a

hierarchically-organized name/value database.

And you can lie and get away with it.

Lots of people lie about their registry data.
You’ll find lots of things that should be

REG_DWORD
stored as a four-byte REG_BINARY.
(This is in part a holdover from

Windows 95’s
registry, which didn’t support REG_DWORD.)

One of the most insidious lies is to lie about the length of
a string you’re writing to the

registry.
Consider the following program:

https://devblogs.microsoft.com/oldnewthing/20040824-00/?p=38063

2/3

#include <windows.h>

#include <stdio.h>

int __cdecl main(int argc, char **argv)

{

 RegSetValueExW(HKEY_CURRENT_USER, L"Scratch",

 0, REG_SZ, (BYTE*)L"12", 2);

 DWORD cb = 0;

 RegQueryValueExW(HKEY_CURRENT_USER, L"Scratch",

 NULL, NULL, NULL, &cb);

 printf("Size is %d bytes\n", cb);

 WCHAR sz[2];

 sz[0] = 0xFFFF;

 sz[1] = 0xFFFF;

 cb = sizeof(sz[0]);

 DWORD dwRc = RegQueryValueExW(HKEY_CURRENT_USER, L"Scratch",

 NULL, NULL, (BYTE*)sz, &cb);

 printf("RegQueryValueExW requesting %d bytes => %d\n",

 sizeof(sz), dwRc);

 printf("%d bytes required\n", cb);

 if (dwRc == ERROR_SUCCESS) {

 printf("sz[0] = %d\n", sz[0]);

 printf("sz[1] = %d\n", sz[1]);

 }

 RegDeleteValueW(HKEY_CURRENT_USER, L"Scratch");

 return 0;

}

If you run this program, you get this:

Size is 2 bytes

RegQueryValueExW requesting 4 bytes => 0

2 bytes required

sz[0] = 49

sz[1] = 65535

What happened?

First, observe that the call to RegSetValueExW lies about the length
of the string, claiming

that it is two bytes long when in fact
it is six! (Two WCHARs plus a terminator.)

The registry dutifully records this lie and reports it back
to subsequent callers.

The first call to RegQueryValueExW asks how big the string is,
and the registry reports the

value 2, since that’s the value it
was given when the value was originally stored.

To show that there really is no null terminator, we ask the
registry to read those two bytes of

data into our buffer,
pre-filling the buffer with sentinel values so we can see
what got updated

and what didn’t.

3/3

Lo and behold, the values were read from the registry and
only two bytes were read. sz[0]

contains the character ‘1’,
and sz[1] remains uninitialized.

This has security implications.

If your program assumes that strings in the registry are always
null-terminated, then you can

be tricked into a buffer overflow
if you happen across a non-null-terminated string.
(For

example, if you use strcpy to copy it around.)

(Note: I’m not going to get into whether it should have been
possible to get into this state in

the first place.
I didn’t design the registry.
Arguing about the past isn’t going to change the

present,
and the present is that this is how it works so you’d better
be ready for it.)

Exercise: Change the last parameter of
RegSetValueExW to 3 and run the program again.

Explain the results and discuss its consequences.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/archive/2003/08/08/54618.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

