
1/2

August 12, 2004

Myth: The /3GB switch expands the user-mode address
space of all programs

devblogs.microsoft.com/oldnewthing/20040812-00

Raymond Chen

Only programs marked as /LARGEADDRESSAWARE are affected.

For compatibility reasons, only programs that explicitly
indicate that they are prepared to

handle a virtual address space
larger than 2GB will get the larger virtual address space.

Unmarked programs get the normal 2GB virtual address space,
and the address space

between 2GB and 3GB goes unused.

Why?

Because far too many programs assume that the high bit of user-mode
virtual addresses is

always clear, often unwittingly.
MSDN has a page listing some of the ways programs make

this
assumption.
One such assumption you may be making is taking
the midpoint between

two pointers by using the formula
(a+b)/2.
As I noted in a previous exercise,
this is subject to

integer overflow and consequently can result
in an erroneous pointer computation.

Consequently, you can’t just take an existing program that you didn’t
write, mark it

/LARGEADDRESSAWARE, and declare your job done.
You have to check with the authors of

that program that they verified
that their code does not make any 2GB assumptions.
(And the

fact that the authors
didn’t mark their program as 3GB-compatible
strongly suggests that no

such verification has occurred.
If it had, they would have marked the program

/LARGEADDRESSAWARE!)

Marking your program /LARGEADDRESSAWARE indicates to the operating
system, “Go

ahead and give this program access to that extra
gigabyte of user-mode address space,”
and

as a result, addresses in the third gigabyte
become possible return values from memory

allocation functions.
If you set
the “Top down” flag in the
memory manager allocation

preferences mask
(search for “top down”),
you can instruct the memory manager to allocate

high-address memory
first, thereby forcing your program to deal with those addresses
sooner

than it normally would.
This is very handy when testing your program in a /3GB

configuration
since it forces the troublesome memory addresses to be used sooner
than

normal.

https://devblogs.microsoft.com/oldnewthing/20040812-00/?p=38183
http://msdn.microsoft.com/library/en-us/memory/base/4gt_ram_tuning.asp
https://devblogs.microsoft.com/oldnewthing/archive/2003/09/17/54945.aspx
http://go.microsoft.com/fwlink/?LinkId=28166

2/2

Exercise: Find the bug in the following function.
Hint: What’s today’s topic?

#define BUFFER_SIZE 32768

BOOL IsPointerInsideBuffer(const BYTE *p, const BYTE *buffer)

{

 return p >= buffer && p - buffer < BUFFER_SIZE;

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

