
1/4

August 4, 2004

Why .shared sections are a security hole
devblogs.microsoft.com/oldnewthing/20040804-00

Raymond Chen

Many people will recommend using shared data sections as a way
to share data between

multiple instances of an application.
This sounds like a great idea, but in fact it’s a security

hole.

Proper shared memory objects created by
the CreateFileMapping function
can be secured.

They have security descriptors that let you specify which users
are allowed to have what level

of access.
By contrast, anybody who loads your EXE or DLL gets access to your
shared

memory section.

Allow me to demonstrate with an intentionally insecure program.

Take
the scratch program and make the following changes:

https://devblogs.microsoft.com/oldnewthing/20040804-00/?p=38253
http://msdn.microsoft.com/library/en-us/fileio/base/createfilemapping.asp
http://weblogs.asp.net/oldnewthing/archive/2003/07/23/54576.aspx

2/4

#pragma comment(linker, “/SECTION:.shared,RWS”)

#pragma data_seg(“.shared”)

int g_iShared = 0;

#pragma data_seg()

void CALLBACK TimerProc(HWND hwnd, UINT, UINT_PTR, DWORD)

{

 int iNew = g_iShared + 1;

 if (iNew == 10) iNew = 0;

 g_iShared = iNew;

 InvalidateRect(hwnd, NULL, TRUE);

}

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 SetTimer(hwnd, 1, 1000, TimerProc);

 return TRUE;

}

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

 TCHAR sz[2];

 wsprintf(sz, TEXT(“%d”), g_iShared);

 TextOut(pps->hdc, 0, 0, sz, 1);

}

Go ahead and run this program. It counts from 0 to 9 over and over
again. Since the

TimerProc function never lets g_iShared go above 9,
the wsprintf is safe from buffer

overflow.

Or is it?

Run this program. Then use the runas utility to run a second copy
of this program under a

different user. For extra fun, make one of
the users an administrator and another a non-

administrator.

Notice that the counter counts up at double speed. That’s to be
expected since the counter is

shared.

Okay, now close one of the copies and relaunch it under a debugger.
(It’s more fun if you let

the administrator’s copy run free and
run the non-administrator’s copy run under a

debugger.)
Let both programs run, then break into the debugger and change the
value of the

variable g_iShared to something really big, say, 1000000.

3/4

Now, depending on how intrusive your debugger is, you might or might
not see the crash.

Some debuggers are “helpful” and “unshare” shared
memory sections when you change their

values from the debugger.
Helpful for debugging (maybe), bad for my demonstration

(definitely).

Here’s how I did it with the built-in ntsd debugger.
I opened a command prompt, which runs

as myself (and I am not an
administrator).
I then used the runas utility to run the scratch

program as
administrator.
It is the administrator’s copy of the scratch program that I’m

going
to cause to crash even though I am just a boring normal non-administrative
user.

From the normal command prompt, I typed
“ntsd scratch” to run the scratch program under

the debugger.
From the debugger prompt, I typed “u TimerProc” to disassemble the

TimerProc function, looking for

01001143 a300300001 mov [scratch!g_iShared (01003000)],eax

(note: your numbers may differ).
I then typed “g 1001143” to instruct the debugger to
execute

normally until that instruction is reached.
When the debugger broke, I typed
“r

eax=12341234;t” to change the value of the eax register
to 0x12341324 and then trace one

instruction.
That one-instruction trace wrote the out-of-range value into
shared memory, and

one second later, the administrator version
of the program crashed with a buffer overflow.

What happened?

Since the memory is shared, all running copies of the scratch
program have access to it. ALl I

did was use the debugger
to run a copy of the scratch program and change the value of
the

shared memory variable. Since the variable is shared,
the value also changes in the

administrator’s copy of the program,
which then causes the wsprintf buffer to overflow,

thereby crashing the administrator’s copy of the program.

A denial of service is bad enough, but you can really do fun
things if a program keeps

anything of value in shared memory.
If there is a pointer, you can corrupt the pointer.
If

there is a string, you can remove the null terminator and
cause it to become “impossibly”

long, resulting in a potential
buffer overflow if somebody copies it without checking the

length.

And if there is a C++ object with a vtable, then you have just hit
the mother lode! What you

do is redirect the vtable to a
bogus vtable (which you construct in the shared memory

section),
and put a function pointer entry in that vtable that points into
some code that you

generated (also into the shared memory section)
that takes over the machine. (If NX is

enabled, then the attack
is much harder but still possible in principle.)

Even if you can’t trigger a buffer overflow by messing with variables
in shared memory, you

can still cause the program to behave erratically.
Just scribbling random numbers all over the

shared memory section will
certainly induce “interesting” behavior in the program under

4/4

attack.

Moral of the story: Avoid shared memory sections.
Since you can’t attach an ACL to the

section, anybody who
can load your EXE or DLL can modify your variables and cause
havoc

in another instance of the program that is running at a
higher security level.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

