
1/7

July 20, 2004

Querying information from an Explorer window
devblogs.microsoft.com/oldnewthing/20040720-00

Raymond Chen

Sometimes software development is inventing new stuff.
But often, it’s just putting together

the stuff you already have.
Today’s puzzle is one of the latter type of problem.

Given a window handle, you can you determine (1) whether it is
an Explorer window, and if

so (2) what folder it is viewing, and
(3) what item is currently focused.

This is not an inherently difficult task.
You just have to put together lots of small pieces.

Start with
the ShellWindows object
which represents all the open shell windows.
You can

enumerate through them all with
the Item property.
This is rather clumsy from C++ because

the ShellWindows object
was designed for use by a scripting language like JScript or Visual

Basic.

IShellWindows *psw;

if (SUCCEEDED(CoCreateInstance(CLSID_ShellWindows, NULL, CLSCTX_ALL,

 IID_IShellWindows, (void**)&psw))) {

 VARIANT v;

 V_VT(&v) = VT_I4;

 IDispatch *pdisp;

 BOOL fFound = FALSE;

 for (V_I4(&v) = 0; !fFound && psw->Item(v, &pdisp) == S_OK;

 V_I4(&v)++) {

 ...

 pdisp->Release();

 }

 psw->Release();

}

From each item, we can ask it for its window handle and see if it’s the one
we want.

https://devblogs.microsoft.com/oldnewthing/20040720-00/?p=38393
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/objects/shellwindows/shellwindows.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/objects/shellwindows/item.asp

2/7

 IWebBrowserApp *pwba;

 if (SUCCEEDED(pdisp->QueryInterface(IID_IWebBrowserApp, (void**)&pwba))) {

 HWND hwndWBA;

 if (SUCCEEDED(pwba->get_HWND((LONG_PTR*)&hwndWBA)) &&

 hwndWBA == hwndFind) {

 fFound = TRUE;

 ...

 }

 pwba->Release();

 }

Okay, now that we have found the folder via its IWebBrowserApp,
we need to get to the top

shell browser. This is done by
querying for the SID_STopLevelBrowser service and asking for

the IShellBrowser interface.

 IServiceProvider *psp;

 if (SUCCEEDED(pwba->QueryInterface(IID_IServiceProvider, (void**)&psp))) {

 IShellBrowser *psb;

 if (SUCCEEDED(psp->QueryService(SID_STopLevelBrowser,

 IID_IShellBrowser, (void**)&psb))) {

 ...

 psb->Release();

 }

 psp->Release();

 }

From the IShellBrowser, we can ask for the current shell view
via
the QueryActiveShellView

method.

 IShellView *psv;

 if (SUCCEEDED(psb->QueryActiveShellView(&psv))) {

 ...

 psv->Release();

 }

Of course, what we really want is
the IFolderView interface,
which is the automation object

that contains all the real goodies.

 IFolderView *pfv;

 if (SUCCEEDED(psv->QueryInterface(IID_IFolderView,

 (void**)&pfv))) {

 ...

 pfv->Release();

 }

Okay, now we’re golden. What do you want to get from the view?
How about the location of

the IShellFolder being viewed.
To do that, we need to use
IPersistFolder2::GetCurFolder.
The

GetFolder method will give us access to the shell folder,
from which we ask for

IPersistFolder2.
(Most of the time you want the IShellFolder interface,
since that’s where

most of the cool stuff hangs out.)

http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/IShellBrowser/IShellBrowser.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/ishellbrowser/queryactiveshellview.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/ifolderview/ifolderview.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/ipersistfolder2/ipersistfolder2.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/ipersistfolder2/getcurfolder.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/ifolderview/getfolder.asp

3/7

 IPersistFolder2 *ppf2;

 if (SUCCEEDED(pfv->GetFolder(IID_IPersistFolder2,

 (void**)&ppf2))) {

 LPITEMIDLIST pidlFolder;

 if (SUCCEEDED(ppf2->GetCurFolder(&pidlFolder))) {

 ...

 CoTaskMemFree(pidlFolder);

 }

 ppf2->Release();

 }

Let’s convert that pidl into a path, for display purposes.

 if (!SHGetPathFromIDList(pidlFolder, g_szPath)) {

 lstrcpyn(g_szPath, TEXT("<not a directory>"), MAX_PATH);

 }

 ...

What else can we do with what we’ve got? Oh right, let’s see what the
currently-focused

object is.

 int iFocus;

 if (SUCCEEDED(pfv->GetFocusedItem(&iFocus))) {

 ...

 }

Let’s display the name of the focused item.
To do that we need the item’s pidl and the

IShellFolder.
(See, I told you the IShellFolder is where the cool stuff is.)
The item comes from

the Item method (surprisingly enough).

 LPITEMIDLIST pidlItem;

 if (SUCCEEDED(pfv->Item(iFocus, &pidlItem))) {

 ...

 CoTaskMemFree(pidlItem);

 }

(If we had wanted a list of selected items we could have used
the Items method, passing

SVGIO_SELECTION.)

After we get the item’s pidl, we also need the IShellFolder:

 IShellFolder *psf;

 if (SUCCEEDED(ppf2->QueryInterface(IID_IShellFolder,

 (void**)&psf))) {

 ...

 psf->Release();

 }

Then we put the two together to get the item’s display name,
with the help of
the

GetDisplayNameOf method.

http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/ifolderview/item.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/ifolderview/items.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/ishellfolder/getdisplaynameof.asp

4/7

 STRRET str;

 if (SUCCEEDED(psf->GetDisplayNameOf(pidlItem,

 SHGDN_INFOLDER,

 &str))) {

 ...

 }

We can use the helper function
StrRetToBuf to convert the kooky
STRRET structure into
a

boring string buffer.
(The history of the kooky STRRET structure will have to wait for
another

day.)

 StrRetToBuf(&str, pidlItem, g_szItem, MAX_PATH);

Okay, let’s put this all together.
It looks rather ugly because I put everything into one huge

function instead of breaking them out into subfunctions.
In “real life” I would have broken

things up into little helper
functions to make things more manageable.

Start with
the
scratch program and add this new function:

http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/shlwapi/string/strrettobuf.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/structures/strret.asp
http://weblogs.asp.net/oldnewthing/archive/2003/07/23/54576.aspx

5/7

#include <shlobj.h>

#include <exdisp.h>

TCHAR g_szPath[MAX_PATH];

TCHAR g_szItem[MAX_PATH];

void CALLBACK RecalcText(HWND hwnd, UINT, UINT_PTR, DWORD)

{

HWND hwndFind = GetForegroundWindow();

g_szPath[0] = TEXT('\0');

g_szItem[0] = TEXT('\0');

IShellWindows *psw;

if (SUCCEEDED(CoCreateInstance(CLSID_ShellWindows, NULL, CLSCTX_ALL,

 IID_IShellWindows, (void**)&psw))) {

 VARIANT v;

 V_VT(&v) = VT_I4;

 IDispatch *pdisp;

 BOOL fFound = FALSE;

 for (V_I4(&v) = 0; !fFound && psw->Item(v, &pdisp) == S_OK;

 V_I4(&v)++) {

 IWebBrowserApp *pwba;

 if (SUCCEEDED(pdisp->QueryInterface(IID_IWebBrowserApp, (void**)&pwba))) {

 HWND hwndWBA;

 if (SUCCEEDED(pwba->get_HWND((LONG_PTR*)&hwndWBA)) &&

 hwndWBA == hwndFind) {

 fFound = TRUE;

 IServiceProvider *psp;

 if (SUCCEEDED(pwba->QueryInterface(IID_IServiceProvider, (void**)&psp))) {

 IShellBrowser *psb;

 if (SUCCEEDED(psp->QueryService(SID_STopLevelBrowser,

 IID_IShellBrowser, (void**)&psb))) {

 IShellView *psv;

 if (SUCCEEDED(psb->QueryActiveShellView(&psv))) {

 IFolderView *pfv;

 if (SUCCEEDED(psv->QueryInterface(IID_IFolderView,

 (void**)&pfv))) {

 IPersistFolder2 *ppf2;

 if (SUCCEEDED(pfv->GetFolder(IID_IPersistFolder2,

 (void**)&ppf2))) {

 LPITEMIDLIST pidlFolder;

 if (SUCCEEDED(ppf2->GetCurFolder(&pidlFolder))) {

 if (!SHGetPathFromIDList(pidlFolder, g_szPath)) {

 lstrcpyn(g_szPath, TEXT("<not a directory>"), MAX_PATH);

 }

 int iFocus;

 if (SUCCEEDED(pfv->GetFocusedItem(&iFocus))) {

 LPITEMIDLIST pidlItem;

 if (SUCCEEDED(pfv->Item(iFocus, &pidlItem))) {

 IShellFolder *psf;

 if (SUCCEEDED(ppf2->QueryInterface(IID_IShellFolder,

 (void**)&psf))) {

 STRRET str;

 if (SUCCEEDED(psf->GetDisplayNameOf(pidlItem,

 SHGDN_INFOLDER,

6/7

 &str))) {

 StrRetToBuf(&str, pidlItem, g_szItem, MAX_PATH);

 }

 psf->Release();

 }

 CoTaskMemFree(pidlItem);

 }

 }

 CoTaskMemFree(pidlFolder);

 }

 ppf2->Release();

 }

 pfv->Release();

 }

 psv->Release();

 }

 psb->Release();

 }

 psp->Release();

 }

 }

 pwba->Release();

 }

 pdisp->Release();

 }

 psw->Release();

}
InvalidateRect(hwnd, NULL, TRUE);

}

Now all we have to do is call this function periodically
and print the results.

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 SetTimer(hwnd, 1, 1000, RecalcText);

 return TRUE;

}

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

 TextOut(pps->hdc, 0, 0, g_szPath, lstrlen(g_szPath));

 TextOut(pps->hdc, 0, 20, g_szItem, lstrlen(g_szItem));

}

We’re ready to roll. Run this program and set it to the side.
Then launch an Explorer window

and watch the program track the folder
you’re in and what item you have focused.

Okay, so I hope I made my point:
Often, the pieces you need are already there; you just have

to
figure out how to put them together. Notice that each of the
pieces is in itself not very big.

You just had to recognize
that they could be put together in an interesting way.

7/7

Exercise: Change this program so it takes the folder and
switches it to details view.

[Raymond is currently on vacation; this message was pre-recorded.]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

