
1/4

July 5, 2004

What’s the difference between SHGetMalloc, SHAlloc,
CoGetMalloc, and CoTaskMemAlloc

devblogs.microsoft.com/oldnewthing/20040705-00

Raymond Chen

Let’s get the easy ones out of the way.

First,
CoTaskMemAlloc is exactly the same as
CoGetMalloc(MEMCTX_TASK) +

IMalloc::Alloc,
and
CoTaskMemFree is the same as
CoGetMalloc(MEMCTX_TASK) +

IMalloc::Free.
CoTaskMemAlloc and CoTaskMemFree (and the less-used

CoTaskMemRealloc)
are just convenience functions that save you the trouble of having to

mess with CoGetMalloc yourself.
Consequently, you can safely allocate memory via

CoGetMalloc(MEMCTX_TASK) + IMalloc::Alloc, and then free it with
CoTaskMemFree, and

vice versa. It’s all the same allocator.

Similarly,
SHAlloc
and
SHFree
are just wrappers around
SHGetMalloc
which allocate/free

the memory via the shell task allocator.
Memory you allocated via SHGetMalloc +

IMalloc::Alloc can be freed
with SHFree.

So far, we have this diagram.

Shell task allocator OLE task allocator

SHAlloc/
SHFree

= SHGetMalloc ?? CoGetMalloc = CoTaskMemAlloc/

CoTaskMemFree

Now what about those question marks?

If you read the comments in shlobj.h, you may get a bit of a hint:

https://devblogs.microsoft.com/oldnewthing/20040705-00/?p=102299
http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_9bj7.asp
http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_2qlf.asp
http://msdn.microsoft.com/library/en-us/com/htm/cmi_m_3twj.asp
http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_63l1.asp
http://msdn.microsoft.com/library/en-us/com/htm/cmi_m_1smd.asp
http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_3lpf.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/shalloc.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/SHFree.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/shgetmalloc.asp

2/4

//===

//
// Task allocator API

//
// All the shell extensions MUST use the task allocator (see OLE 2.0

// programming guild for its definition) when they allocate or free

// memory objects (mostly ITEMIDLIST) that are returned across any

// shell interfaces. There are two ways to access the task allocator

// from a shell extension depending on whether or not it is linked with

// OLE32.DLL or not (purely for efficiency).

//
// (1) A shell extension which calls any OLE API (i.e., linked with

// OLE32.DLL) should call OLE's task allocator (by retrieving

// the task allocator by calling CoGetMalloc API).

//
// (2) A shell extension which does not call any OLE API (i.e., not linked

// with OLE32.DLL) should call the shell task allocator API (defined

// below), so that the shell can quickly loads it when OLE32.DLL is not

// loaded by any application at that point.

//
// Notes:

// In next version of Windowso release, SHGetMalloc will be replaced by

// the following macro.

//
// #define SHGetMalloc(ppmem) CoGetMalloc(MEMCTX_TASK, ppmem)

//
//===

(Yes, those typos “guild” and “Windowso” have been there since 1995.)

This discussion strongly hints at what’s going on.

When Windows 95 was being developed, computers typically had
just 4MB of memory. (The

cool people got 8MB.)
But Explorer was also heavily reliant upon COM for its shell extension

architecture, and loading OLE32.DLL into memory was a significant kick
in the teeth. Under

such tight memory conditions,
even the loss of 4K of memory was noticeable.

The solution: Play “OLE Chicken”.

The shell, it turns out, didn’t use very much of COM:
The only objects it supported were in-

process apartment-threaded
objects with no marshalling.
So the shell team wrote a “mini-

COM” that supported only those operations
and use it instead of the real thing.
(It helped

that one of the high-ranking members of
the shell team was a COM super-expert.)
The shell

had
its own miniature task allocator,
its own miniature binder,
its own miniature drag-drop

loop,
everything it needed provided
you didn’t run any other programs that used OLE32.

Once some other program that used OLE32 started running, you
had a problem: There were

now two separate versions of OLE in the system:
the real thing and the fake version inside

the shell.
Unless something was done, you wouldn’t be able to interoperate
between real-

https://blogs.msdn.microsoft.com/oldnewthing/archive/2003/10/10/55256.aspx
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/shgetmalloc.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/shcocreateinstance.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/shdodragdrop.asp

3/4

COM and fake-shell-COM.
For example, you wouldn’t be able to drag/drop data between

Explorer
(using fake-shell-COM)
and a window that was using real-COM.

The solution: With the help of other parts of the system, the shell detected
that “COM is now

in the building” once anybody loaded OLE32.DLL,
and it and transferred all the information

it had been managing on its own into the world of real COM.
Once it did this, all the shell

pseudo-COM functions switched to
real-COM as well.
For example, once OLE32.DLL got

loaded, calls to the shell’s
fake-task-allocator just went to the real task allocator.

But what is “OLE Chicken”?
This is another variation of the various
“chicken”-type games,

perhaps the most famous of which is
Schedule Chicken.
In “OLE Chicken”, each program

would avoid loading OLE32.DLL
as long as possible, so that it wouldn’t be the one blamed for

the long pause
as OLE32.DLL got itself off the ground and ready for action.
(Remember,

we’re talking 1995-era machines where allocating 32K would
bring the wrath of the

performance team upon your head.)

Okay, so let’s look at that comment block again.

The opening paragraph mentions the possibility that a shell extension
does not itself link

with OLE32.DLL.
Option (1) discusses a shell extension that does use OLE32,
in which case it

should use the official OLE functions like
CoGetMalloc.
But Option (2) discusses a shell

extension that does not use OLE32.
Those shell extensions are directed to use the shell’s

fake-COM functions
like SHGetMalloc, instead of the real-COM functions, so that no new

dependency on OLE32 is created.
Therefore, if OLE32 is not yet loaded, loading these
shell

extensions will also not cause OLE32 to be loaded,
thereby saving the cost of loading and

initializing OLE32.DLL.

So the completion of our diagram for 1995-era programs would be
something like this:

Before OLE32.DLL is loaded:

Shell task allocator OLE task allocator

SHAlloc/
SHFree

= SHGetMalloc ≠ CoGetMalloc = CoTaskMemAlloc/

CoTaskMemFree

After OLE32.DLL is loaded:

Shell task allocator OLE task allocator

SHAlloc/
SHFree

= SHGetMalloc = CoGetMalloc = CoTaskMemAlloc/

CoTaskMemFree

https://web.archive.org/web/20040729081330/http://msdn.microsoft.com/library/en-us/dnstone/html/stone041999.asp

4/4

The final “Note” hints at the direction the shell intended to go.
Eventually, loading

OLE32.DLL would not be as painful as it was
in Windows 95, and the shell can abandon its

fake-COM and just
use the real thing. At this point, asking for the shell task allocator
would

become the same as asking for the COM task allocator.

That time actually arrived a long time ago.
The days of 4MB machines are now the stuff of

legend.
The shell has ditched its fake-COM and now just uses real-COM everywhere.

Therefore,
the diagram today is the one with the equals-sign.
All four functions are

interchangeable in Windows XP and beyond.

What if you want to run on older systems? Well, it is always
acceptable to use

CoTaskMemAlloc/CoTaskMemFree. Why? You can
puzzle this out logically.
Since those

functions are exported from OLE32.DLL, the fact that
you are using them means that

OLE32.DLL is loaded, at which point
the “After” diagram above with the equals sign kicks in,

and everything
is all one big happy family.

The case where you need to be careful is if your DLL does
not
link to OLE32.DLL.
In that

case, you don’t know whether you are in the
“Before” or “After” case, and you have to play it

safe and
use the shell task allocator for the things that are documented
as using the shell task

allocator.

I hope this discussion also provides the historical background
of the function
SHLoadOLE,

which today doesn’t do anything
because OLE is already always loaded.
But in the old days,

this signalled to the shell,
“Okay, now is the time to
brain-dump your fake-COM into the real-

COM.”

Raymond Chen

Follow

http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/shloadole.asp
http://catb.org/~esr/jargon/html/B/brain-dump.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

