
1/2

June 29, 2004

The difference between thread-safety and re-entrancy
devblogs.microsoft.com/oldnewthing/20040629-00

Raymond Chen

An operation is “thread-safe” if it can be performed from multiple
threads safely, even if the

calls happen simultaneously on multiple
threads.

An operation is re-entrant if it can be performed while the operation
is already in progress

(perhaps in another context).
This is a stronger concept than thread-safety,
because the

second attempt to perform the operation can even come
from within the same thread.

Consider the following function:

int length = 0;

char *s = NULL;

// Note: Since strings end with a 0, if we want to

// add a 0, we encode it as "\0", and encode a

// backslash as "\\".

// WARNING! This code is buggy - do not use!

void AddToString(int ch)

{

 EnterCriticalSection(&someCriticalSection);

 // +1 for the character we're about to add

 // +1 for the null terminator

 char *newString = realloc(s, (length+1) * sizeof(char));

 if (newString) {

 if (ch == '\0' || ch == '\\') {

 AddToString('\\'); // escape prefix

 }

 newString[length++] = ch;

 newString[length] = '\0';

 s = newString;

 }

 LeaveCriticalSection(&someCriticalSection);

}

This function is thread-safe because the critical section prevents
two threads from attempting

to add to the string simultaneously.
However, it is not re-entrant.

https://devblogs.microsoft.com/oldnewthing/20040629-00/?p=38643

2/2

The internal call to AddToString occurs while the data structures
are unstable. At the point of

the call, execution re-enters
the start of the function AddToString, but this time the attempt

to realloc the memory will use a pointer (s) that is no longer valid.
(It was invalidated by the

call to realloc performed by the caller.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

