
1/1

May 28, 2004

High-performance multithreading is very hard
devblogs.microsoft.com/oldnewthing/20040528-00

Raymond Chen

Among other things, you need to understand weak memory models.
Hereby incorporating by

reference Brad Abrams‘ discussion of volatile and MemoryBarrier(). In particular, Vance

Morrison’s discussion of memory models is important reading.
(Though I think Brad is being

too pessimistic about volatile. Ensuring release semantics at the store of “singleton” is all you

really need – you want to make sure the singleton is fully constructed before you let the world

see it. volatile here is overkill.)
Vance’s message also slyly introduces the concepts of

“acquire” and “release” memory semantics. An interlocked operation with “acquire”

semantics prevents future reads from being advanced to before the acquisition. An

interlocked operation with “release” semantics prevents previous writes from being delayed

until after the release.

In the absence of explicitly-named memory semantics, the Win32 Interlocked* functions by

default provide full memory barrier semantics. However, some functions, like

InterlockedIncrementAcquire, forego the full memory barrier semantics and provide only

acquire or release semantics.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/20040528-00/?p=39133
http://weblogs.asp.net/brada/
http://weblogs.asp.net/brada/archive/2004/05/12/130935.aspx
http://discuss.develop.com/archives/wa.exe?A2=ind0203B&L=DOTNET&P=R375
http://msdn.microsoft.com/library/en-us/dllproc/base/interlockedincrementacquire.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

