
1/2

May 19, 2004

Beware the hash reset attack
devblogs.microsoft.com/oldnewthing/20040519-00

Raymond Chen

There are a variety of message digest algorithms out there,
MD5 being a particularly popular

one.
These generate a “message digest” (essentially, a hash)
so you can detect whether

somebody has tampered with a file,
the theory being that it’s hard to tamper with a file

without
changing its hash.

But make sure you record the file size as well as the digest.

Not that collisions are necessarily easy to create by mistake.
(I’ve heard a rumor that the

deployment team has seen an MD5 collision,
but it’s just a rumor. I have no evidence. Heck,

maybe what really
happened was that somebody
on the deployment got their MR2 into a car

accident…)

Anyway, the possibility of a “reset attack” makes collisions
trivial to create.

Hash generators typically operate on a stream.
The hash engine maintains some state.
The

file to be hashed is broken up into chunks, and each chunk
is combined with the engine’s

state variables in some complex way.
When you have passed all the data through the engine,

you push a
button on the engine and out pops the hash value (which is typically
a copy of the

state variables, or possibly a subset of them).

Now suppose somebody came up with a way of “resetting” the engine;
that is, returning it to

the initial state.
Here’s how they can
make any document match your digest:

First, create an alternate message and send it through the hash engine.

Next, generate the bytes necessary to “reset” the engine.

Finally, append the original message.

In other words, the fake file looks like this:

[alternate message][garbage][original message]


where “garbage” is the reset.

https://devblogs.microsoft.com/oldnewthing/20040519-00/?p=39263


2/2

This fake file has the same hash as the original message, since
the “garbage” resets the hash

engine to the initial state,
at which point the replay of the original message regenerates the

hash.

Result: A file with the same hash as the original, but with
different content!

In a proper attack, of course, the “alternate message” would be
crafted so the garbage and

original mesage would be ignored.
You might end it with a marker that means
“Ignore

everything after this point.”
(For HTML, you can just say <NOFRAMES> and everything

after
that point will be largely ignored by all modern browsers.)
Many other file types
encode

the expected file length in the header,
in which case you can append whatever garbage you

want without
having any effect.

But if you also store the file size with the hash,
then the reset attack fails, because a reset

attack always
generates a file bigger than the original.
To create a collision, they would have

to create a shorter
alternate message than the original, and then fiddle with the
extra bytes to

get the desired target hash to come out.
This is significantly harder than just resetting.

(I’m not aware of anybody who has successfully
been able to reset MD5, mind you.
This is a

protective measure: If somebody figures out how
to reset MD5, a small bit of work on your

side will prevent
you from falling victim.)

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

