
1/2

May 11, 2004

How do the FILE_SHARE_* bits interact with the desired
access bits?

devblogs.microsoft.com/oldnewthing/20040511-00

Raymond Chen

It’s really not that complicated. If you permit, say, FILE_SHARE_READ , then you’re saying,

“I’m okay with other people reading this file while I have it open.” And if you leave off the

flag, then you’re saying, “I do not want other people reading this file while I have it open.”

Now all that’s left to do is work out what that means.
So suppose you omit the flag, indicating

that you don’t want to let others read the file. Then when you attempt to open it yourself, the

open will fail if anybody else has the file open for reading. And if the open succeeds, then the

system will prevent anybody else from opening the file for reading until you close your

handle.
That’s all.
Of course, if the file is already open, then a corresponding check is made

between your desired access and the file sharing mode of the people who already opened it.

For example, if somebody already has the file open and denies read sharing, then if you try to

open for read, you will get a sharing violation.
These restrictions are cumulative, of course. If

one person opens a file without FILE_SHARE_READ and another person opens a file without

FILE_SHARE_WRITE , then attempts to open the file for read or for write will fail. (The read

fails because the first person didn’t permit read, and the write fails because the second

person didn’t permit write.)
Repeat the above logic for “delete” and “write” permission, and

that’s it in a nutshell.
There is a big nasty table in MSDN that walks through all the

combinations, but I personally think it confuses the matter rather than clarifying.
Even more

confusingly, the table uses “X” to mean that the combination is permitted. They should’ve

used a bullet (“•”) or a check mark (“ü“), since an “X” has the connotation of “not allowed”.

Let’s look at one row of the table and see how the information in it is “obvious”: Say, the row

that reads “GENERIC_READ / GENERIC_WRITE / FILE_SHARE_READ”. You are asking

for read and write, and you permit read (and implicitly deny write).
The requested access

(read/write) requires that all previous openers have granted both read and write. There are

three columns that correspond to this, namely the ones that say “FS_R FS_W”.
The

requested sharing mode (read only) requires that all previous openers have requested read-

only access. In other words, there can’t be any G_W entries. That rules out two of the

columns, leaving just “G_R FS_R FS_W”, and indeed only one column is checked in the

table.

https://devblogs.microsoft.com/oldnewthing/20040511-00/?p=39403
http://msdn.microsoft.com/library/en-us/fileio/base/creating_and_opening_files.asp

2/2

Notice that the file share bits you pass don’t have to match up with your file access bits. The

file share bits indicate what you want to allow other people to do. The access bits indicate

what you want to do yourself.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

