
1/3

April 28, 2004

What is __purecall?
devblogs.microsoft.com/oldnewthing/20040428-00

Raymond Chen

Both C++ and C# have the concept of virtual functions.
These are functions which always

invoke the most heavily
derived implementation, even if called from a pointer to
the base

class.
However, the two languages differ on the semantics of
virtual functions during object

construction and destruction.

C# objects exist as their final type before construction begins,
whereas C++ objects change

type during the construction process.

Here’s an example:

class Base {

public:

 Base() { f(); }

 virtual void f() { cout << 1; }

 void g() { f(); }

};
class Derived : public Base {

public:

 Derived() { f(); }

 virtual void f() { cout << 2; }

};

When a Derived object is constructed,
the object starts as a Base , then the
 Base::Base

constructor is executed.
Since the object is still a Base ,
the call to f() invokes Base::f

and not Derived::f .
After the Base::Base constructor completes,
the object then

becomes a Derived and
the Derived::Derived constructor is run.
This time, the call to

f() invokes
 Derived::f .

In other words, constructing a Derived
object prints “12”.

Similar remarks apply to the destructor.
The object is destructed in pieces, and a call to
a

virtual function invokes the function corresponding
to the stage of destruction currently in

progress.

https://devblogs.microsoft.com/oldnewthing/20040428-00/?p=39613

2/3

This is why some coding guidelines recommend against
calling virtual functions

from a constructor or destructor.
Depending on what stage of construction/destruction

is taking place,
the same call to f() can have different effects.
For example, the function

Base::g() above
will call Base::f
if called from the Base::Base
constructor or

destructor,
but will call Derived::f
if called after the object has been constructed and

before
it is destructed.

On the other hand, if this sample were written
(with suitable syntactic changes) in C#,
the

output would be “22”
because a C# object is created as its final type.
Both calls to f()

invoke Derived::f ,
since the object is always a Derived .
Notice that means a method

can be invoked on an object
before its constructor has run.
Something to bear in

mind.

Sometimes your C++ program may crash with the error
“R6025 – pure virtual function call”.

This message comes from a function called __purecall.
What does it mean?

C++ and C# both have the concept of a “pure virtual function”
(which C# calls “abstract”).

This is a method which is declared by the base class,
but for which no implementation is

provided.
In C++ the syntax for this is “=0”:

class Base {

public:

 Base() { f(); }

 virtual void f() = 0;

};

If you attempt to create a Derived object,
the base class will attempt to call Base::f ,

which does not exist since it is a pure virtual function.
When this happens, the “pure virtual

function call” error
is raised and the program is terminated.

Of course, the mistake is rarely as obvious as this.
Typically, the call to the pure virtual

function occurs
deep inside the call stack of the constructor.

This raises the side issue of
the “novtable” optimization.
As we noted above, the identity of

the object changes
during construction. This change of identity is performed
by swapping the

vtables around during construction.
If you have a base class that is never instantiated
directly

but always via a derived class, and
if you have followed the rules against calling

virtual methods during construction,
then you can use the novtable optimization to get

rid of
the vtable swapping during construction of the base class.

If you use this optimization, then
calling virtual methods during the base class’s

constructor or destructor will result in undefined behavior.
It’s a nice optimization,

but it’s your own responsibility to make
sure you conform to its requirements.

http://msdn.microsoft.com/library/en-us/vclang/html/_langref_novtable.asp

3/3

Sidebar: Why does C# not do type morphing during construction?
One reason is that it

would result in the possibility,
given two objects A and B, that
typeof(A) == typeof(B) yet

sizeof(A) != sizeof(B).
This would happen if A were a fully constructed object and B
were a

partially-constructed object on its way to becoming
a derived object.

Why is this so bad? Because the garbage collector is really keen
on knowing the size of each

object so it can know how much memory
to free. It does this by checking the object’s type.
If

an object’s type did not completely determine its size,
this would result in the garbage

collector having to do extra
work to figure out exactly how big the object is,
which means

extra code in the constructor and destructor,
as well as space in the object,
to keep track of

which stage of construction/destruction is
currently in progress. And all this for something

most coding
guidelines recommend against anyway.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

