
1/3

April 22, 2004

Cleaner, more elegant, and wrong
devblogs.microsoft.com/oldnewthing/20040422-00

Raymond Chen

Just because you can’t see the error path doesn’t mean it doesn’t exist.

Here’s a snippet from a book on C# programming, taken from the chapter
on how great

exceptions are.

try {

 AccessDatabase accessDb = new AccessDatabase();

 accessDb.GenerateDatabase();

} catch (Exception e) {

 // Inspect caught exception

}

public void GenerateDatabase()

{

 CreatePhysicalDatabase();

 CreateTables();

 CreateIndexes();

}


Notice how much cleaner and more elegant [this] solution is.

Cleaner, more elegant, and wrong.

Suppose an exception is thrown during CreateIndexes().
The GenerateDatabase() function

doesn’t catch it, so the
error is thrown back out to the caller, where it is caught.

But when the exception left GenerateDatabase(), important
information was lost: The state of

the database creation.
The code that catches the exception doesn’t know which step
in

database creation failed. Does it need to delete the indexes?
Does it need to delete the tables?

Does it need to delete
the physical database? It doesn’t know.

So if there is a problem creating CreateIndexes(), you leak
a physical database file and a table

forever.
(Since these are presumably files on disk, they hang around
indefinitely.)

Writing correct code in the exception-throwing model is in a sense
harder than in an error-

code model, since anything
can fail, and you have to be ready for it.
In an error-code model,

it’s obvious when you have to check for
errors: When you get an error code.
In an exception

https://devblogs.microsoft.com/oldnewthing/20040422-00/?p=39683


2/3

model, you just have to know that errors can occur
anywhere.

In other words, in an error-code model, it is obvious when somebody
failed to handle an

error: They didn’t check the error code.
But in an exception-throwing model, it is not obvious

from looking at
the code whether somebody handled the error, since the error is not
explicit.

Consider the following:

Guy AddNewGuy(string name)

{

Guy guy = new Guy(name);

AddToLeague(guy);

guy.Team = ChooseRandomTeam();

return guy;

}


This function creates a new Guy, adds him to the league, and
assigns him to a team

randomly.
How can this be simpler?

Remember: Every line is a possible error.

What if an exception is thrown by “new Guy(name)”?

Well, fortunately, we haven’t yet started doing anything, so
no harm done.

What if an exception is thrown by “AddToLeague(guy)”?

The “guy” we created will be abandoned, but the GC will clean that up.

What if an exception is thrown by “guy.Team = ChooseRandomTeam()”?

Uh-oh, now we’re in trouble. We already added the guy to the league.
If somebody catches

this exception, they’re going to find a guy in the
league who doesn’t belong to any team.
If

there’s some code that walks through all the members of the league
and uses the guy.Team

member, they’re going to
take a NullReferenceException since guy.Team isn’t initialized yet.

When you’re writing code, do you think about what the consequences
of an exception would

be if it were raised by each line of code?
You have to do this if you intend to write

correct code.

Okay, so how to fix this? Reorder the operations.

Guy AddNewGuy(string name)

{

Guy guy = new Guy(name);

guy.Team = ChooseRandomTeam();

AddToLeague(guy);

return guy;

}




3/3

This seemingly insignificant change has a big effect on error
recovery. By delaying the

commitment of the data (adding the guy
to the league), any exceptions taken during the

construction of the
guy do not have any lasting effect. All that happens is that a
partly-

constructed guy gets abandoned and eventually gets cleaned up by GC.

General design principle: Don’t commit data until they are ready.

Of course, this example was rather simple since
the steps in setting up the guy had no side-

effects.
If something went wrong during set-up, we could just abandon the
guy and let the GC

handle the cleanup.

In the real world, things are a lot messier.
Consider the following:

Guy AddNewGuy(string name)

{

Guy guy = new Guy(name);

guy.Team = ChooseRandomTeam();

guy.Team.Add(guy);

AddToLeague(guy);

return guy;

}


This does the same thing as our corrected function, except that somebody
decided that it

would be more efficient if each team kept a list of members,
so you have to add yourself to

the team you intend to join.
What consequences does this have on the function’s correctness?

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

