
1/2

April 20, 2004

Why can't the system hibernate just one process?
devblogs.microsoft.com/oldnewthing/20040420-00

Raymond Chen

Windows lets you hibernate the entire machine, but why can’t
it hibernate just one process?

Record the state of the process
and then resume it later.

Because there is state in the system that is not part of the process.

For example, suppose your program has taken a mutex, and then it
gets process-hibernated.

Oops, now that mutex is abandoned
and is now up for grabs. If that mutex was protecting

some
state, then when the process is resumed from hibernation,
it thinks it still owns the

mutex and the state should therefore
be safe from tampering, only to find that it doesn’t

own the mutex any more and its state is corrupted.

Imagine all the code that does something like this:

// assume hmtx is a mutex handle that

// protects some shared object G

WaitForSingleObject(hmtx, INFINITE);

// do stuff with G

...

// do more stuff with G on the assumption that

// G hasn't changed.

ReleaseMutex(hmtx);


Nobody expects that the mutex could secretly get released
during the “…” (which is what

would happen if the process
got hibernated). That goes against everything mutexes stand for!

Consider, as another example, the case where you have a file
that was opened for exclusive

access. The program will
happily run on the assumption that nobody can modify
the file

except that program. But if you process-hibernate
it, then some other process can now open

the file (the exclusive owner
is no longer around), tamper with it, then resume the original

program.
The original program on resumption will see a tampered-with file and
may crash or

(worse) be tricked into a security vulnerability.

One alternative would be to keep all objects that belong to
a process-hibernated program still

open. Then you would have
the problem of a file that can’t be deleted because it is
being held

open by a program that isn’t even running!
(And indeed, for the resumption to be successful

https://devblogs.microsoft.com/oldnewthing/20040420-00/?p=39723


2/2

across a reboot,
the file would have to be re-opened upon reboot. So now you have
a file that

can’t be deleted even after a reboot because it’s
being held open by a program that isn’t

running. Think of the
amazing denial-of-service you could launch against somebody:
Create

and hold open a 20GB file, then hibernate the process
and then delete the hibernation file.

Ha-ha, you just created a permanently undeletable 20GB file.)

Now what if the hibernated program had created windows.
Should the window handles still

be valid while the program
is hibernated? What happens if you send it a message?
If the

window handles should not remain valid, then what happens
to broadcast messages? Are

they “saved somewhere” to be replayed
when the program is resumed? (And what if the

broadcast message
was something like “I am about to remove this USB hard drive,
here is

your last chance to flush your data”?
The hibernated program wouldn’t get a chance to flush

its data.
Result: Corrupted USB hard drive.)

And imagine the havoc if you could take the hibernated process
and copy it to another

machine, and then attempt to restore it there.

If you want some sort of “checkpoint / fast restore” functionality
in your program, you’ll have

to write it yourself.
Then you will have to deal explicitly with issues like the above.
(“I want to

open this file, but somebody deleted it in the meantime.
What should I do?”
Or
“Okay, I’m

about to create a checkpoint, I’d better purge all my buffers
and mark all my cached data as

invalid because the thing I’m
caching might change while I’m in suspended animation.”)

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

