
1/2

March 22, 2004

Why an object cannot be its own enumerator
devblogs.microsoft.com/oldnewthing/20040322-00

Raymond Chen

I’ve seen people using the following cheat when
forced to implement an enumerator:

class MyClass :

 public IDataObject, public IEnumFORMATETC, ...

{

 ...

 HRESULT EnumFormatEtc(DWORD dwDirection,

 IEnumFORMATETC** ppenumOut)

 {

 _dwDirection = dwDirection;

 Reset();

 *ppenumOut = this;

 AddRef();

 return S_OK;

 }

};

Why create a separate enumerator object when you can
just be your own enumerator? It’s so

much easier.

And it’s wrong.

Consider what happens if two people try to enumerate
your formats at the same time: The

two enumerators
are really the same enumerator, so operations on one
will interfere with the

other.
For example, consider this odd code fragment
(error checking deleted for expository

purposes)
which looks to see if the data object exposes
the same data under multiple aspects:

https://devblogs.microsoft.com/oldnewthing/20040322-00/?p=40143

2/2

IDataObject *pdto = <MyClass instance>;

// Obtain two enumerators since we will run

// each one independently.

IEnumFORMATETC* penum1;

IEnumFORMATETC* penum2;

pdto->EnumFormatEtc(DATADIR_GET, &penum1);

pdto->EnumFormatEtc(DATADIR_GET, &penum2);

FORMATETC fe1, fe2;

while (penum1->Next(1, &fe1, NULL) == S_OK) {

 penum2->Reset(); // start a new pass

 while (penum2->Next(1, &fe2, NULL) == S_OK) {

 if (fe1.cfFormat == fe2.cfFormat &&

 cf1.dwAspect != cf2.dwAspect) {

 // found it!

 }

 }

}

penum1->Release();

penum2->Release();

When the code does a penum2->Reset() , this also
inadvertently resets the first

enumerator.
The loop runs through penum2 (which therefore also
runs through penum1),

and when it’s done, the enumerator
is left at the end of the list.

Then we loop back and call penum1->Next() ,
which immediately returns failure since the

inner loop
ran it to completion.

Result: The loop fails to find anything
because the second enumerator corrupted the first.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

