
1/4

March 8, 2004

C++ scoped static initialization is not thread-safe, on
purpose!

devblogs.microsoft.com/oldnewthing/20040308-00

Raymond Chen

[Note:
After this article was written,
the C++ standard has been revised.
Starting in C++11,

scoped static initialization is now thread-safe,
but it comes with a cost: Reentrancy now

invokes undefined behavior.]

The rule for static variables at block scope
(as opposed to static variables with global scope)
is

that they are initialized the first time execution
reaches their declaration.

Find the race condition:

int ComputeSomething()

{

 static int cachedResult = ComputeSomethingSlowly();

 return cachedResult;

}

The intent of this code is
to compute something expensive the first time the
function is called,

and then cache the result to be
returned by future calls to the function.

A variation on this basic technique is
is advocated by this web site to avoid the “static

initialization
order fiasco”.
(Said fiasco is well-described on that page so I encourage you
to

read it and understand it.)

The problem is that this code is not thread-safe. Statics
with local scope are internally

converted by the compiler into
something like this:

int ComputeSomething()

{

 static bool cachedResult_computed = false;

 static int cachedResult;

 if (!cachedResult_computed) {

 cachedResult_computed = true;

 cachedResult = ComputeSomethingSlowly();

 }

 return cachedResult;

}

https://devblogs.microsoft.com/oldnewthing/20040308-00/?p=40363
http://users.utu.fi/~sisasa/oasis/cppfaq/ctors.html#[10.9]

2/4

Now the race condition is easier to see.

Suppose two threads both call this function for the first time.
The first thread gets as far as

setting
cachedResult_computed = true,
and then gets pre-empted.
The second thread now

sees that cachedResult_computed is true
and skips over the body of the “if” branch and

returns
an uninitialized variable.

What you see here is not a compiler bug.
This behavior is required by the C++ standard.

You can write variations on this theme to create even worse
problems:

class Something { ... };

int ComputeSomething()

{

 static Something s;

 return s.ComputeIt();

}

This gets rewritten internally as
(this time, using pseudo-C++):

class Something { ... };

int ComputeSomething()

{

 static bool s_constructed = false;

 static uninitialized Something s;

 if (!s_constructed) {

 s_constructed = true;

 new(&s) Something; // construct it

 atexit(DestructS);

 }

 return s.ComputeIt();

}

// Destruct s at process termination

void DestructS()

{

ComputeSomething::s.~Something();

}

Notice that there are multiple race conditions here.
As before, it’s possible for one thread to

run ahead of the
other thread and use “s” before it has been constructed.

Even worse, it’s possible for the first thread to get
pre-empted immediately after testing

s_constructed
but before setting it to “true”.
In this case, the object s gets double-

constructed
and double-destructed.

That can’t be good.

But wait, that’s not all. Not look at what happens if you
have two runtime-initialized local

statics:

3/4

class Something { ... };

int ComputeSomething()

{

 static Something s(0);

 static Something t(1);

 return s.ComputeIt() + t.ComputeIt();

}

This is converted by the compiler into the following
pseudo-C++:

class Something { ... };

int ComputeSomething()

{

 static char constructed = 0;

 static uninitialized Something s;

 if (!(constructed & 1)) {

 constructed |= 1;

 new(&s) Something; // construct it

 atexit(DestructS);

 }

 static uninitialized Something t;

 if (!(constructed & 2)) {

 constructed |= 2;

 new(&t) Something; // construct it

 atexit(DestructT);

 }

 return s.ComputeIt() + t.ComputeIt();

}

To save space, the compiler placed the two
“x_constructed” variables into a bitfield.
Now

there are multiple
non-interlocked
read-modify-store operations on the variable

“constructed”.

Now consider what happens if one thread
attempts to execute “constructed |= 1”
at the same

time another thread attempts
to execute “constructed |= 2”.

On an x86, the statements likely assemble into

 or constructed, 1

...

 or constructed, 2

without any “lock” prefixes.
On multiprocessor machines, it is possible
for the two stores

both to read the old value
and clobber each other with conflicting values.

On ia64 and alpha, this clobbering is much more
obvious since they do not have a single

read-modify-store instruction; the three
steps must be explicitly coded:

4/4

 ldl t1,0(a0) ; load

 addl t1,1,t1 ; modify

 stl t1,1,0(a0) ; store

If the thread gets pre-empted between the load
and the store, the value stored may no longer

agree with the value being overwritten.

So now consider the following insane sequence of execution:

Thread A tests “constructed” and finds it zero and prepares
to set the value to 1, but it

gets pre-empted.

Thread B enters the same function, sees “constructed” is zero
and proceeds to construct

both “s” and “t”, leaving
“constructed” equal to 3.

Thread A resumes execution and completes its load-modify-store
sequence, setting

“constructed” to 1, then constructs “s”
(a second time).

Thread A then proceeds to construct “t” as well (a second time)
setting “constructed”

(finally) to 3.

Now, you might think you can wrap the runtime initialization
in a critical section:

int ComputeSomething()

{

EnterCriticalSection(...);

static int cachedResult = ComputeSomethingSlowly();

LeaveCriticalSection(...);

return cachedResult;

}

Because now you’ve placed the one-time initialization inside
a critical section and made it

thread-safe.

But what if the second call comes from within the same thread?
(“We’ve traced the call; it’s

coming from inside the thread!”)
This can happen if ComputeSomethingSlowly() itself calls

ComputeSomething(), perhaps indirectly.
Since that thread already owns the critical section,

the code
enter it just fine and you once again
end up returning an uninitialized variable.

Conclusion: When you see runtime initialization of a local static
variable, be very concerned.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

