
1/2

March 2, 2004

Why are HANDLE return values so inconsistent?
devblogs.microsoft.com/oldnewthing/20040302-00

Raymond Chen

If you look at the various functions that return HANDLE s,
you’ll see that some of them return

NULL
(like CreateThread)
and some of them return INVALID_HANDLE_VALUE
(like

CreateFile).
You have to check the documentation to see what each particular function

returns on failure.

Why are the return values so inconsistent?

The reasons, as you may suspect, are historical.

The values were chosen to be compatible with 16-bit Windows.
The 16-bit functions

OpenFile , _lopen and
 _lcreat return -1 on failure, so the 32-bit
 CreateFile

function returns INVALID_HANDLE_VALUE
in order to facilitate porting code from Win16.

(Armed with this, you can now answer the following trivia
question: Why do I call

CreateFile
when I’m not actually creating a file? Shouldn’t it be called
 OpenFile ?

Answer: Yes, OpenFile would have
been a better name, but
that name was already taken.)

On the other hand, there are no Win16 equivalents for
 CreateThread or CreateMutex , so

they
return NULL .

Since the precedent had now been set for inconsistent return values,
whenever a new

function got added, it was a bit of a toss-up whether
the new function returned NULL or

INVALID_HANDLE_VALUE .

This inconsistency has multiple consequences.

First, of course, you have to be careful to check the return values
properly.

Second, it means that if you write a generic handle-wrapping class,
you have to be mindful of

two possible “not a handle” values.

Third, if you want to pre-initialize a HANDLE variable,
you have to initialize it in a manner

compatible with the function
you intend to use. For example, the following code is wrong:

https://devblogs.microsoft.com/oldnewthing/20040302-00/?p=40443
http://msdn.microsoft.com/library/en-us/fileio/base/openfile.asp

2/2

HANDLE h = NULL;

if (UseLogFile()) {

 h = CreateFile(...);

}

DoOtherStuff();

if (h) {

 Log(h);

}

DoOtherStuff();

if (h) {

 CloseHandle(h);

}

This code has two bugs. First, the return value from
 CreateFile is checked incorrectly. The

code above
checks for NULL instead of INVALID_HANDLE_VALUE .
Second, the code

initializes the h variable incorrectly.
Here’s the corrected version:

HANDLE h = INVALID_HANDLE_VALUE;

if (UseLogFile()) {

 h = CreateFile(...);

}

DoOtherStuff();

if (h != INVALID_HANDLE_VALUE) {

 Log(h);

}

DoOtherStuff();

if (h != INVALID_HANDLE_VALUE) {

 CloseHandle(h);

}

Fourth, you have to be particularly careful with the
 INVALID_HANDLE_VALUE value:
By

coincidence, the value INVALID_HANDLE_VALUE
happens to be numerically equal to the

pseudohandle returned by
 GetCurrentProcess() .
Many kernel functions accept

pseudohandles, so if
if you mess up
and accidentally call, say, WaitForSingleObject on a

failed INVALID_HANDLE_VALUE handle, you will actually
end up waiting on your own

process. This wait will, of course,
never complete, because a process is signalled when it exits,

so you ended up waiting for yourself.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

