
1/2

February 6, 2004

Adjustor thunks
devblogs.microsoft.com/oldnewthing/20040206-00

Raymond Chen

Yesterday we learned about the layout of COM objects and I
hinted at “adjustor thunks”.

If you find yourself debugging in disassembly,
you’ll sometimes find strange little functions

called
“adjustor thunks”.
Let’s take another look at the object we laid out last time:

class CSample : public IPersist, public IServiceProvider

{

public:

 // *** IUnknown ***

 STDMETHODIMP QueryInterface(REFIID riid, void** ppv);

 STDMETHODIMP_(ULONG) AddRef();

 STDMETHODIMP_(ULONG) Release();

 // *** IPersist ***

 STDMETHODIMP GetClassID(CLSID* pClassID);

 // *** IQueryService ***

 STDMETHODIMP QueryService(REFGUID guidService,

 REFIID riid, void** ppv);

private:

 LONG m_cRef;

 ...

};

p → lpVtbl → → → QueryInterface (1)

q → lpVtbl → QueryInterface (2) AddRef (1)

m_cRef AddRef (2) Release (1)

… Release (2) GetClassID (1)

QueryService (2)

In the diagram, p is the pointer returned when the IPersist interface
is needed, and q is the

pointer for the IQueryService interface.

https://devblogs.microsoft.com/oldnewthing/20040206-00/?p=40723
http://weblogs.asp.net/oldnewthing/archive/2004/02/05/68017.aspx

2/2

Now, there is only one QueryInterface method, but there are two entries,
one for each vtable.

Remember that each function in a vtable receives
the corresponding interface pointer as its

“this” parameter. That’s
just fine for QueryInterface (1); its interface pointer is the
same as

the object’s interface pointer. But that’s bad news for
QueryInterface (2), since its interface

pointer is q, not p.

This is where the adjustor thunks come in.

The entry for QueryInterface (2) is a stub function that
changes q to p, and then lets

QueryInterface (1) do the
rest of the work. This stub function is the adjustor thunk.

[thunk]:CSample::QueryInterface`adjustor{4}':

 sub DWORD PTR [esp+4], 4 ; this -= sizeof(lpVtbl)

 jmp CSample::QueryInterface

The adjustor thunk takes the “this” pointer and subtracts 4,
converting q into p, then it jumps

to the QueryInterface (1)
function to do the real work.

Whenever you have multiple inheritance and a virtual function is
implemented on multiple

base classes, you will get an
adjustor thunk for the second and subsequent base
class

methods in order to convert the “this” pointer into a common
format.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

