
1/3

February 5, 2004

The layout of a COM object
devblogs.microsoft.com/oldnewthing/20040205-00

Raymond Chen

The Win32 COM calling convention specifies the layout of
the virtual method table (vtable) of

an object.
If a language/compiler wants to support COM, it must lay
out its object in the

specified manner so other components
can use it.

It is no coincidence that the Win32 COM object layout matches
closely the C++ object layout.

Even though COM was originally
developed when C was the predominant programming

language,
the designers saw fit to “play friendly” with the up-and-coming
new language C++.

The layout of a COM object is made explicit in the header files
for the various
interfaces. For

example, here’s IPersist from objidl.h, after cleaning
up some macros.

typedef struct IPersistVtbl

{

 HRESULT (STDMETHODCALLTYPE *QueryInterface)(

 IPersist * This,

 /* [in] */ REFIID riid,

 /* [iid_is][out] */ void **ppvObject);

 ULONG (STDMETHODCALLTYPE *AddRef)(

 IPersist * This);

 ULONG (STDMETHODCALLTYPE *Release)(

 IPersist * This);

 HRESULT (STDMETHODCALLTYPE *GetClassID)(

 IPersist * This,

 /* [out] */ CLSID *pClassID);

} IPersistVtbl;

struct IPersist

{

 const struct IPersistVtbl *lpVtbl;

};

This corresponds to the following memory layout:

p → lpVtbl → QueryInterface

AddRef

https://devblogs.microsoft.com/oldnewthing/20040205-00/?p=40733

2/3

Release

GetClassID

What does this mean?

A COM interface pointer is a pointer to a structure that consists
of just a vtable.
The vtable is

a structure that contains a bunch of function pointers.
Each function in the list takes that

interface pointer (p) as its first
parameter (“this”).

The magic to all this is that since your function gets p
as its first parameter, you can “hang”

additional
stuff onto that vtable:

p → lpVtbl → QueryInterface

…

other stuff

…

AddRef

Release

GetClassID

The functions in the vtable can use offsets relative to the
interface pointer to access its other

stuff.

If an object implements multiple interfaces but they are all descendants
of each other, then a

single vtable can be used for all of them.
For example, the object above is already set to be

used either as
an IUnknown or as an IPersist, since IUnknown is a subset of IPersist.

On the other hand, if an object implements multiple interfaces
that are not descendants of

each other, then you get multiple
inheritance, in which case the object is typically laid out in

memory like this:

p → lpVtbl → → → QueryInterface (1)

q → lpVtbl → QueryInterface (2) AddRef (1)

…

other stuff

…

AddRef (2) Release (1)

Release (2) …

…

If you are using an interface that comes from the first vtable, then
the interface pointer is p.

But if you’re using an interface that
comes from the second vtable, then the interface pointer

is q.

3/3

Hang onto that diagram, because
tomorrow we will learn about those mysterious “adjustor

thunks”.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

