
1/4

February 3, 2004

Mismatching scalar and vector new and delete
devblogs.microsoft.com/oldnewthing/20040203-00

Raymond Chen

In a previous entry I alluded to the problems that
can occur if you mismatch scalar “new”

with vector “delete[]”
or vice versa.

There is a nice description of C++ memory management
in
C++ Gotchas: Avoiding Common

Problems in Coding and Design
on
www.informit.com,
and I encourage you to read
at least

the section titled
Failure to Distinguish Scalar and Array Allocation
before continuing with

this entry,
because I’m going to use that information as
a starting point.

Here’s how the Microsoft C++ compiler manages vector allocation.
Note that this is internal

implementation detail, so it’s subject
to change at any time, but knowing this may give a

better insight
into why mixing scalar and vector new/delete is a bad thing.

The important thing to note is that when you do a scalar
“delete p”, you are telling the

compiler, “p points to a single
object.” The compiler will call the destructor once, namely
for

the object you are destructing.

When you do “delete[] p”, you are saying,
“p points to a bunch of objects, but I’m not telling

you how many.”
In this case, the compiler needs to generate extra code to keep
track of how

many it needs to destruct. This extra information
is kept in a “secret place” when the vector is

allocated with
“new[]”.

Let’s watch this in action:

class MyClass {

public:

 MyClass(); // constructor

 ~MyClass(); // destructor

 int i;

};
MyClass *allocate_stuff(int howmany)

{

 return new MyClass[howmany];

}

The generated code for the “allocate_stuff” function
looks like this:

https://devblogs.microsoft.com/oldnewthing/20040203-00/?p=40763
http://weblogs.asp.net/oldnewthing/archive/2004/01/30/65013.aspx
http://www.informit.com/isapi/product_id~%7B4F6C1FE6-59E8-48BF-BB67-979C052EA7B8%7D/content/index.asp
http://www.informit.com/
http://www.informit.com/isapi/product_id~%7B63BFBFF1-1E0E-466F-8E1A-D4AD830C2455%7D/content/index.asp

2/4

 push esi

 mov esi, [esp+8] ; howmany

 ; eax = howmany * sizeof(MyClass) + sizeof(size_t)

 lea eax, [esi*4+4]

 push eax

 call operator new

 test eax, eax

 pop ecx

 je fail

 push edi

 push OFFSET MyClass::MyClass

 push esi

 lea edi, [eax+4] ; edi = eax + sizeof(size_t)

 push 4 ; sizeof(MyClass)

 push edi

 mov [eax], esi ; howmany

 call `vector constructor iterator'

 mov eax, edi

 pop edi

 jmp done

fail:

 xor eax, eax

done:

 pop esi

 retd 4

Translated back into pseudo-C++, the code looks like this:

MyClass* allocate_stuff(int howmany)

{

 void *p = operator new(

 howmany * sizeof(MyClass) + sizeof(size_t));

 if (p) {

 size_t* a = reinterpret_cast<size_t*>(p);

 *a++ = howmany;

 vector constructor iterator(a,

 sizeof(MyClass), &MyClass::MyClass);

 return reinterpret_cast<MyClass*>(a);

 }

 return NULL;

}

In other words, the memory layout of the vector of
MyClass objects looks like this:

howmany

MyClass[0]

MyClass[1]

3/4

…

MyClass[howmany-1]

The pointer returned by the new[] operator
is not the start of the
allocated memory but

rather points to MyClass[0]. The count of
elements is hidden in front of the vector.

The deletion of a vector performs this operation in reverse:

void free_stuff(MyClass* p)

{

 delete[] p;

}

generates

 mov ecx, [esp+4] ; p

 test ecx, ecx

 je skip

 push 3

 call MyClass::`vector deleting destructor`

skip

 ret 4

Translated back into pseudo-C++, the code looks like this:

void free_stuff(MyClass* p)

{

 if (p) p->vector deleting destructor(3);

}

The vector deleting destructor goes like this (pseudo-code):

void MyClass::vector deleting destructor(int flags)

{

 if (flags & 2) { // if vector destruct

 size_t* a = reinterpret_cast<size_t*>(this) - 1;

 size_t howmany = *a;

 vector destructor iterator(p, sizeof(MyClass),

 howmany, MyClass::~MyClass);

 if (flags & 1) { // if delete too

 operator delete(a);

 }

 } else { // else scalar destruct

 this->~MyClass(); // destruct one

 if (flags & 1) { // if delete too

 operator delete(this);

 }

 }

}

4/4

The vector deleting destructor takes some flags. If 2 is set,
then a vector is being destructed;

otherwise a single object is
being destructed. If 1 is set, then the memory is also freed.

In our case, the flags parameter is 3, so we will perform
a vector destruct followed by a delete.

Observe that this
code sucks the original “howmany” value out of its secret
hiding place and

asks the vector destructor iterator to
run the destructor that many times before freeing the

memory.

So now, armed with this information, you should be able to
describe what happens if you

allocate memory with scalar “new”
and free it with vector “delete[]” or vice versa.

Bonus exercise: What optimizations can be performed if the
destructor MyClass::~MyClass()

is removed from the class
definition?

Answers to come tomorrow.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2004/02/04/67384.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

