
1/4

January 29, 2004

Integer overflow in the new[] operator
devblogs.microsoft.com/oldnewthing/20040129-00

Raymond Chen

Integer overflows are becoming a new security attack vector.
Mike Howard’s article discusses

some of the ways you can protect
yourself against integer overflow attacks.

One attack vector he neglects to mention is integer overflow
in the new[] operator. This

operator performs an implicit multiplication
that is unchecked:

int *allocate_integers(int howmany)

{

 return new int[howmany];

}

If you study the code generation for this, it comes out to

 mov eax, [esp+4] ; eax = howmany

 shl eax, 2 ; eax = howmany * sizeof(int)

 push eax

 call operator new ; allocate that many bytes

 pop ecx

 retd 4

Notice that the multiplication by sizeof(int) is not checked
for overflow. Somebody can trick

you into under-allocating
memory by passing a value like howmany = 0x40000001.
For

larger structures, multiplication overflow happens sooner.

Let’s look at a slightly longer example:

class MyClass {

public:

 MyClass(); // constructor

 int stuff[256];

};
MyClass *allocate_myclass(int howmany)

{

 return new MyClass[howmany];

}

https://devblogs.microsoft.com/oldnewthing/20040129-00/?p=40833
http://msdn.microsoft.com/library/en-us/dncode/html/secure01142004.asp

2/4

This class also contains a constructor,
so allocating an array of them involves
two steps:

allocate the memory, then
construct each object.
The allocate_myclass function compiles
to

this:

 mov eax, [esp+4] ; howmany

 shl eax, 10 ; howmany * sizeof(MyClass)

 push esi

 push eax

 call operator new ; allocate that many bytes

 mov esi, eax

 test esi, esi

 pop ecx

 je fail

 push OFFSET MyClass::MyClass

 push [esp+12] ; howmany

 push 1024 ; sizeof(MyClass)

 push esi ; memory block

 call `vector constructor iterator`

 mov eax, esi

 jmp loop

fail:

 xor eax, eax

done:

 pop esi

 retd 4

This function does an unchecked multiplication of
the size, then tries to allocate that many

bytes,
then tells the vector constructor iterator to
call the constructor (MyClass::MyClass)

that many
times.

If somebody tricks you into calling
allocate_myclass(0x200001), the multiplication

overflows and only 1024 bytes are allocated.
This allocation succeeds, and then the vector

constructor tries to initialize 0x200001 of
those items, even though in reality only one
of

them got allocated. So you walk off the end
of the memory block and start corrupting

memory.

That’s a bad thing.

To protect against this, you can wrap an integer
overflow check around the array allocation.

template<typename T>

T* NewArray(size_t n)

{

 if (n <= (size_t)-1 / sizeof(T))

 return new T[n];

 // n is too large - act as if we

 // ran out of memory

 return NULL;

}

3/4

Note: If you use a throwing “new”, then replace
the “return NULL” with an appropriate

throw.

You can now use this template to allocate
arrays in an overflow-safe manner.

MyClass *allocate_myclass(int howmany)

{

 return NewArray<MyClass>(howmany);

}

This generates the following code:

 push edi

 mov edi, [esp+8] ; howmany

 cmp edi, 4194303 ; overflow?

 ja overflow

 mov eax, edi

 shl eax, 10

 push esi

 push eax

 call operator new

 mov esi, eax

 test esi, esi

 pop ecx

 je failed

 push OFFSET MyClass::MyClass

 push edi

 push 1024

 push esi

 call

 call `vector constructor iterator`

 mov eax, esi

 jmp done

failed:

 xor eax, eax

done:

 pop esi

 jmp exit

overflow:

 xor eax, eax

exit:

 pop edi

 retd 4

Notice the new code that checks for a possible
integer multiplication overflow.

But how could you get tricked into an overflow situation?

The most common way of doing this is by reading the value out
of a file or some other storage

location. For example,
if your code is parsing a file that has a section whose
format is “length

followed by data”,
somebody could intentionally put an overflow-inducing value
into the

4/4

“length” field, then get somebody else to try
to load the file.

This is particularly dangerous if the filetype is something
that is generally considered “not

dangerous”, like a JPG.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

