
1/2

January 28, 2004

Another reason not to do anything scary in your DllMain:
Inadvertent deadlock

devblogs.microsoft.com/oldnewthing/20040128-00

Raymond Chen

Your DllMain function runs inside the loader lock,
one of the few times the OS lets you run

code while one
of its internal locks is held.
This means that you must be extra careful not to

violate
a lock hierarchy in your DllMain; otherwise, you
are asking for a deadlock.

(You do have a
lock hierarchy in your DLL, right?)

The loader lock is taken by any function that needs to
access the list of DLLs loaded into the

process.
This includes functions like GetModuleHandle
and GetModuleFileName.
If your

DllMain enters a critical section or waits on
a synchronization object, and that critical section

or
synchronization object is owned by some code that is
in turn waiting for the loader lock,

you just created a deadlock:

// global variable

CRITICAL_SECTION g_csGlobal;

// some code somewhere

EnterCriticalSection(&g_csGlobal);

... GetModuleFileName(MyInstance, ..);

LeaveCriticalSection(&g_csGlobal);

BOOL WINAPI

DllMain(HINSTANCE hinstDLL, DWORD fdwReason,

 LPVOID lpvReserved)

{

 switch (fdwReason) {

 ...

 case DLL_THREAD_DETACH:

 EnterCriticalSection(&g_csGlobal);

 ...

 }

 ...

}

Now imagine that some thread is happily executing the first
code fragment and enters

g_csGlobal, then
gets pre-empty. During this time, another thread exits.
This enters the

loader lock and sends out
DLL_THREAD_DETACH messages while the loader lock is still

https://devblogs.microsoft.com/oldnewthing/20040128-00/?p=40853
http://www.osr.com/ddk/ddtools/dv_8pkj.htm

2/2

held.

You receive the DLL_THREAD_DETACH and attempt to enter your DLL’s
g_csGlobal. This

blocks on the first thread, who owns the
critical section. That thread then resumes execution

and calls
GetModuleFileName. This function requires the loader lock
(since it’s accessing the

list of DLLs loaded into the process),
so it blocks, since the loader lock is owned by somebody

else.

Now you have a deadlock:

g_cs owned by first thread, waiting on loader lock.

Loader lock owned by second thread, waiting on g_cs.

I have seen this happen. It’s not pretty.

Moral of the story: Respect the loader lock.
Include it in your lock hierarchy rules if you take

any locks in your DllMain.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

