
1/2

January 27, 2004

Some reasons not to do anything scary in your DllMain
devblogs.microsoft.com/oldnewthing/20040127-00

Raymond Chen

As everybody knows by now,
you’re not supposed to do anything even remotely
interesting in

your
DllMain function.
Oleg Lvovitch has written two very good
articles about this,
one about

how things work,
and
one about what goes wrong when they don’t work.

Here’s another reason not to do anything remotely interesting
in your DllMain: It’s common

to load a library without actual
intent to invoke its full functionality. For example, somebody

might load your library like this:

// error checking deleted for expository purposes

hinst = LoadLibrary(you);

hicon = LoadIcon(you, MAKEINTRESOURCE(5));

FreeLibrary(hinst);


This code just wants your icon.
It would be very surprised (and perhaps even upset) if
your

DLL did something heavy like starting up a
timer or a thread.

(Yes, this could be avoided by using
LoadLibraryEx and LOAD_LIBRARY_AS_DATAFILE,

but
that’s not my point.)

Another case where your library gets loaded even though no
code is going to be run is when it

gets tugged along as
a dependency for some other DLL. Suppose “middle” is the name
of

some intermediate DLL that is linked to your DLL.

hinst = LoadLibrary(middle);

pfn = GetProcAddress(hinst, "SomeFunction");

pfn(...);

FreeLibrary(hinst);


When “middle” is loaded, your DLL will get loaded and
initialized, too. So your initialization

runs
even if “SomeFunction” doesn’t use your DLL.

This “intermediate DLL loaded for a brief time” scenario
is actually quite common.
For

example, if somebody does “Regsvr32 middle.dll”,
that will load the middle DLL to call its

DllRegisterServer
function, which typically doesn’t do much other than
install some registry

keys. It almost certainly doesn’t
call into your helper DLL.

https://devblogs.microsoft.com/oldnewthing/20040127-00/?p=40873
http://msdn.microsoft.com/library/en-us/dllproc/base/dllmain.asp
https://devblogs.microsoft.com/oleglv/
http://weblogs.asp.net/oleglv/archive/2003/12/12/43068.aspx
http://weblogs.asp.net/oleglv/archive/2003/12/12/43069.aspx


2/2

Another example is the opening of the Control Panel folder.
The Control Panel folder loads

every *.cpl file so it
can call its
CplApplet
function to determine what icon to display.
Again,

this typically will not call into your helper DLL.

And under no circumstances should you create any objects
with thread affinity in your

DLL_PROCESS_ATTACH handler.
You have no control over which thread will send the

DLL_PROCESS_ATTACH message, nor which thread will send
the

DLL_PROCESS_DETACH message. The thread that sends the
DLL_PROCESS_ATTACH

message might terminate immediately
after it loads your DLL. Any object with thread-

affinity
will then stop working since its owner thread is gone.

And even if that thread survives, there is no guarantee
that the thread that calls FreeLibrary

is the same one
that called LoadLibrary. So you can’t clean up those
objects with thread

affinity in DLL_PROCESS_DETACH since
you’re on the wrong thread.

And absolutely under no circumstances should you be doing
anything as crazy as creating a

window inside your
DLL_PROCESS_ATTACH.
In addition to the thread affinity issues,

there’s the
problem of global hooks. Hooks running inside the loader
lock are a recipe for

disaster. Don’t be surprised if
your machine deadlocks.

Even more examples to come tomorrow.

Raymond Chen

Follow







http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/cplapplet.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

