
1/4

January 19, 2004

Uninitialized garbage on ia64 can be deadly
devblogs.microsoft.com/oldnewthing/20040119-00

Raymond Chen

On Friday, we talked about some of the bad things that can
happen if you call a function with

the wrong signature.
The ia64 introduces yet another possible bad consequence of
a

mismatched function signature which you may have thought was harmless.

The CreateThread function accepts a
LPTHREAD_START_ROUTINE, which has the

function signature

DWORD CALLBACK ThreadProc(LPVOID lpParameter);

One thing that people seem to like to do is to take a function that
returns void and cast it to a

LPTHREAD_START_ROUTINE.
The theory is, “I don’t care what the return value is,
so I

may as well use a function that doesn’t have a return value.
The caller will get garbage, but

that’s okay; garbage is fine.”
Here one web page that contains this mistake:

void MyCritSectProc(LPVOID /*nParameter*/)

{ ... }

hMyThread = CreateThread(NULL, 0,

 (LPTHREAD_START_ROUTINE) MyCritSectProc,

 NULL, 0, &MyThreadID);

This is hardly the only web page that supplies buggy sample
code.
Here’s sample code from a

course at Old Dominion University
that makes the same mistake,
and
sample code from Long

Island University,
It’s like shooting fish in a barrel. Just google for
CreateThread

LPTHREAD_START_ROUTINE and pretty much all the hits
are people calling CreateThread

incorrectly.
Even sample code in MSDN gets this wrong.
Here’s a whitepaper that

misdeclares both the return value and the input parameter
in a manner that will crash on

Win64,

And it’s all fun until somebody gets hurt.

On the ia64, each 64-bit register is actually 65 bits.
The extra bit is called “NaT” which stands

for “not a thing”.
The bit is set when the register does not contain a valid value.
Think of it as

the integer version of the floating point NaN.

https://devblogs.microsoft.com/oldnewthing/20040119-00/?p=41003
http://msdn.microsoft.com/library/en-us/dllproc/base/createthread.asp
http://msdn.microsoft.com/library/en-us/dllproc/base/threadproc.asp
http://www.clipcode.net/content/win32_4.htm
http://www.cs.odu.edu/~wild/windowsNT/Fall97/version3.htm#SLIDE6
http://phoenix.liunet.edu/~mdevi/win32/Mutex.htm
http://www.google.com/search?q=CreateThread+LPTHREAD_START_ROUTINE
http://msdn.microsoft.com/library/en-us/ipc/base/multithreaded_pipe_server.asp
http://msdn.microsoft.com/library/en-us/dndllpro/html/msdn_dldwork.asp

2/4

The NaT bit gets set most commonly from speculative execution.
There is a special form of

load instruction on the ia64 which
attempts to load the value from memory, but if the load

fails
(because the memory is paged out or the address is invalid),
then instead of raising a

page fault, all that happens is that
NaT bit gets set, and execution continues.

All mathematical operations on NaT just produce NaT again.

The load is called “speculative” because it is intended for
speculative execution. For example,

consider the following
imaginary function:

void SomeClass::Sample(int *p)

{

 if (m_ready) {

 DoSomething(*p);

 }

}

The assembly for this function might go like this:

SomeClass::Sample

 alloc r35=ar.pfs, 2, 2, 1 // 2 input, 2 locals, 1 output

 mov r34, rp // save return address

 ld4 r32=[r32] // fetch m_ready

 ld4.s r36=[r33];; // speculative load of *p

 cmp.eq p14, p15=r0, r32 // m_ready == 0?

(p15) chk.s r36=[r33] // if not, validate r36

(p15) br.call rp=DoSomething // call

 mov rp=r34;; // return return address

 mov.i ar.pfs=r35 // clean registers

 br.ret rp;; // return

I suspect most of you haven’t seen ia64 assembly before.
Since this isn’t an article on ia64

assembly,
I’ll gloss over the details that aren’t relevant to my
point.

After setting up the register frame and saving the
return address, we load the value of

m_ready and also
perform a speculative load of *p
into the r36 register.
Notice that we are

starting to execute the
“true” branch of the “if” statement before we even
know whether the

condition is true!
That’s why this is known as speculative execution.

(Why do this? Because memory access is slow.
It is best to issue memory accesses as far in

advance
of their use as possible, so you don’t sit around
stalled on RAM.)

We then check the value of m_ready, and if it is
nonzero, we execute the two lines marked

with (p15).
The first is a “chk.s” instruction which says,
“If the r36 register is NaT, then

perform a nonspeculative
load from [r33]; otherwise, do nothing.”

3/4

So if the speculative load of *p had failed, the chk.s instruction
will attempt to load it for real,

raising the page
fault and allowing the memory manager to page the memory
back in (or to

let the exception dispatcher raise the
STATUS_ACCESS_VIOLATION).

Once the value of the r36 register has been settled once
and for all, we call DoSomething.

(Since we have two
input registers [r32, r33] and two local registers
[r34, r35], the output

register is r36.)

After the call returns, we clean up and return to our
own caller.

Notice that if it turns out that m_ready was FALSE,
and the access of *p had failed for

whatever reason,
then the r36 register would have been left in a NaT state.

And that’s where the danger lies.

For you see, if you have a register whose value is NaT
and you so much as breathe on it the

wrong way
(for example, try to save its value to memory),
the processor will raise a

STATUS_REG_NAT_CONSUMPTION exception.

(There do exist some instructions that do not raise
an exception when handed a NaT register.

For example,
all arithmetic operations support NaT; they just produce
another NaT as the

result. And there is a special “store
to memory, even if it is NaT” instruction,
which is
handy

when dealing with variadic functions.)

Okay, maybe you can see where I’m going with this.
(It sure is taking me a long time.)

Suppose you’re one of the people who take a function
returning void and cast it to a

LPTHREAD_START_ROUTINE.
Suppose that function happens to leave the r8 register as

NaT,
because it ended with a speculative load that didn’t pan out.
You now return back to

kernel32’s thread dispatcher with
NaT as the return value. Kernel32 then tries to save this

value as the thread exit code and raises a
STATUS_REG_NAT_CONSUMPTION exception.

Your program dies deep inside kernel and you have no idea why.
Good luck debugging this

one!

There’s an analogous problem with passing too few parameters
to a function. If you pass too

few parameters to a function,
the extra parameters might be NaT. And the great thing is,
even

if the function is careful not to access that parameter
until some other conditions are met, the

compiler may
find that it needs to spill the parameter, thereby raising the

STATUS_REG_NAT_CONSUMPTION exception.

I’ve actually seen it happen.
Trust me, you don’t want to get tagged to debug it.

https://devblogs.microsoft.com/oldnewthing/archive/2004/01/13/58199.aspx#59293

4/4

The ia64 is a very demanding architecture.
In tomorrow’s entry, I’ll talk about some other

ways the ia64
will make you pay the penalty when you take shortcuts in your code
and

manage to skate by on the comparatively error-forgiving i386.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

