
1/5

January 16, 2004

How can a program survive a corrupted stack?
devblogs.microsoft.com/oldnewthing/20040116-00

Raymond Chen

Continuing from
yesterday:

The x86 architecture traditionally uses the EBP register to
establish a stack frame. A typical

function prologue goes like this:

 push ebp ; save old ebp

 mov ebp, esp ; establish new ebp

 sub esp, nn*4 ; local variables

 push ebx ; must be preserved for caller

 push esi ; must be preserved for caller

 push edi ; must be preserved for caller

This establishes a stack frame that looks like this,
for, say, a __stdcall function that takes two

parameters.

.. rest of stack ..

param2

param1

return address

saved EBP <- EBP

local1

local2

…

local-nn

saved EBX

saved ESI

https://devblogs.microsoft.com/oldnewthing/20040116-00/?p=41023
https://devblogs.microsoft.com/oldnewthing/archive/2004/01/15/58973.aspx

2/5

saved EDI <- ESP

Parameters can be accessed with positive offsets from EBP;
for example, param1 is [ebp+8].

Local variables have negative
offsets from EBP; for example, local2 is [ebp-8].

Now suppose that a calling convention or function declaration
mismatch occurs and extra

garbage is left on the stack:

.. rest of stack ..

param2

param1

return address

saved EBP <- EBP

local1

local2

…

local-nn

saved EBX

saved ESI

saved EDI

garbage

garbage <- ESP

The function doesn’t really feel any damage yet. The parameters
are still accessible at the

same positive offsets and the local
variables are still accessible at the same negative offsets.

The real damage doesn’t occur until it’s time to clean up.
Look at the function epilogue:

 pop edi ; restore for caller

 pop esi ; restore for caller

 pop ebx ; restore for caller

 mov esp, ebp ; discard locals

 pop ebp ; restore for caller

 retd 8 ; return and clean stack

3/5

In a normal stack, the three “pop” instructions match with the
actual values on the stack and

nobody gets hurt. But on the
garbage stack, the “pop edi” actually loads garbage into the EDI

register, as does the “pop esi”. And the “pop ebx” – which thinks
it’s restoring the original

value of EBX – actually loads the
original value of the EDI register into EBX. But then the

“mov esp, ebp” instruction fixes the stack back up, so the
“pop ebp” and “retd” are executed

with a repaired stack.

What happened here? Things sort of got put back on their feet.
Well, except that the ESI,

EDI, and EBX registers got corrupted.
If you’re lucky, the values in ESI, EDI and EBX

weren’t important
and could have survived corruption. Or all that was important was

whether the value was zero or not, and you were lucky and replaced
one nonzero value with

another. For whatever reason, the corruption
of those three registers is not immediately

apparent, and you end up
never realizing what you did wrong.

Maybe the corruption has a subtle effect (say, you changed a value
from zero to nonzero,

causing the caller to go down the wrong codepath),
but it’s subtle enough that you don’t

notice, so you ship it,
throw a party, and start the next project.

But then a new compiler comes along, say one that does FPO optimization.

FPO stands for “frame pointer omission”; the function dispenses with the
EBP register as a

frame register and instead just uses it like any other
register. On the x86,
which has

comparatively few registers, an extra
arithmetic register goes a long way.

With FPO, the function prologue goes like this:

 sub esp, nn*4 ; local variables

 push ebp ; must be preserved for caller

 push ebx ; must be preserved for caller

 push esi ; must be preserved for caller

 push edi ; must be preserved for caller

The resulting stack frame looks like this:

.. rest of stack ..

param2

param1

return address

local1

local2

https://devblogs.microsoft.com/oldnewthing/archive/2004/01/05/47685.aspx

4/5

…

local-nn

saved EBP

saved EBX

saved ESI

saved EDI <- ESP

Everything is now accessed relative to the ESP register.
For example, local-nn is [esp+0x10].

Under these conditions, garbage on the stack is much more fatal.
The function epilogue goes

like this:

 pop edi ; restore for caller

 pop esi ; restore for caller

 pop ebx ; restore for caller

 pop ebp ; restore for caller

 add esp, nn*4 ; discard locals

 retd 8 ; return and clean stack

If there is garbage on the stack, the four “pop” instructions will
restore the wrong values, as

before, but this time, the cleanup of
local variables won’t fix anything.
The “add esp, nn*4”

will adjust the stack by what the function believes
to be the correct amount, but since there

was garbage on the stack,
the stack pointer will be off.

.. rest of stack ..

param2

param1

return address

local1

local2 <- ESP (oops)

The “retd 8” instruction now attempts to return to the caller,
but instead it returns to

whatever is in local2, which is probably
not valid code.

So this is an example of where optimizing your code reveals
other people’s bugs.

Monday, I’ll give a much more subtle example of something
that can go wrong if you use the

wrong function signature for a
callback.

5/5

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

