
1/2

January 9, 2004

Why do member functions need to be "static" to be used
as a callback?

devblogs.microsoft.com/oldnewthing/20040109-00

Raymond Chen

As we learned yesterday,
nonstatic member functions take a secret “this” parameter, which

makes
them incompatible with the function signature required by Win32 callbacks.

Fortunately, nearly all callbacks provide some way of providing context.
You can shove the

“this” pointer into the context so you can reconstruct
the source object. Here’s an example:

class SomeClass {

...

static DWORD CALLBACK s_ThreadProc(LPVOID lpParameter)

{
 return ((SomeClass*)lpParameter)->ThreadProc();

}
DWORD ThreadProc()

{
 ... fun stuff ...

}
};

Some callback function signatures place the context parameter
(also known as “reference

data”) as the first parameter. How
convenient, for the secret “this” parameter is also the first

parameter. Looking at
the various calling conventions available to us,
it sure
looks like the

__stdcall calling convention
for member functions matches our desired stack layout

rather well.
Let’s take WAITORTIMERCALLBACK
for example:

__stdcall callback __stdcall method call thiscall method call

.. rest of stack rest of stack rest of stack ..

TimerOrWaitFired TimerOrWaitFired TimerOrWaitFired <- ESP

lpParameter <- ESP this <- ESP

https://devblogs.microsoft.com/oldnewthing/20040109-00/?p=41133
http://weblogs.asp.net/oldnewthing/archive/2004/01/08/48616.aspx
http://weblogs.asp.net/oldnewthing/archive/2004/01/08/48616.aspx
http://msdn.microsoft.com/library/en-us/dllproc/base/waitortimercallback.asp

2/2

Well, “thiscall” doesn’t match, but the two “__stdcall”s do.
Fortunately the compiler is smart

enough to recognize this and
can optimize the s_ThreadProc static method to
nothing if

you just give it enough of a nudge:

class SomeClass {

...

static DWORD CALLBACK s_ThreadProc(LPVOID lpParameter)

{
 return ((SomeClass*)lpParameter)->ThreadProc();

}
DWORD __stdcall ThreadProc()

{
 ... fun stuff ...

}
};

If you look at the code generation for the s_ThreadProc
function, you’ll see that has been

reduced to nothing but a
jump instruction, since the compiler has realized that the two

calling conventions coincide here so there is no actual translation
to do.

?s_ThreadProc@SomeClass@@SGKPAX@Z PROC NEAR

 jmp ?ThreadProc@SomeClass@@QAGKXZ

?s_ThreadProc@SomeClass@@SGKPAX@Z ENDP

Now some people would take this one step further and just
cast the second parameter to

CreateThread
to LPTHREAD_START_ROUTINE
and get rid of the helper s_ThreadProc

function
entirely.
I strongly advise against this.
I have seen too many people cause

trouble by miscasting
function pointers; more on this in a future entry.

Although we took advantage above of a coincidence between the two
 __stdcall calling

conventions,
we did not rely on it.
If the coincidence in calling conventions fails to occur,
the

code is still correct.
This is important when it comes time to port this code to
another

architecture, one where the coincidence may longer
be true!

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

