
1/2

January 8, 2004

The history of calling conventions, part 3
devblogs.microsoft.com/oldnewthing/20040108-00

Raymond Chen

Okay, here we go: The 32-bit x86 calling conventions.
(By the way, in case people didn’t get

it: I’m only talking in the context of calling conventions you’re likely to encounter when doing

Windows programming or which are used by Microsoft compilers. I do not intend to cover

calling conventions for other operating systems or that are specific to a particular language or

compiler vendor.)
Remember: If a calling convention is used for a C++ member function,

then there is a hidden “this” parameter that is the implicit first parameter to the function.

All

The 32-bit x86 calling conventions all preserve the EDI, ESI, EBP, and EBX registers, using

the EDX:EAX pair for return values.

C (__cdecl)

The same constraints apply to the 32-bit world as in the 16-bit world. The parameters are

pushed from right to left (so that the first parameter is nearest to top-of-stack), and the caller

cleans the parameters. Function names are decorated by a leading underscore.

__stdcall

This is the calling convention used for Win32, with exceptions for variadic functions (which

necessarily use __cdecl) and a very few functions that use __fastcall. Parameters are pushed

from right to left [corrected 10:18am] and the callee cleans the stack. Function names are

decorated by a leading underscore and a trailing @-sign followed by the number of bytes of

parameters taken by the function.

__fastcall

The first two parameters are passed in ECX and EDX, with the remainder passed on the stack

as in __stdcall. Again, the callee cleans the stack. Function names are decorated by a leading

@-sign and a trailing @-sign followed by the number of bytes of parameters taken by the

function (including the register parameters).

thiscall

The first parameter (which is the “this” parameter) is passed in ECX, with the remainder

passed on the stack as in __stdcall. Once again, the callee cleans the stack. Function names

are decorated by the C++ compiler in an extraordinarily complicated mechanism that

https://devblogs.microsoft.com/oldnewthing/20040108-00/?p=41163
http://msdn.microsoft.com/library/en-us/vccore98/html/_core___cdecl.asp
http://weblogs.asp.net/oldnewthing/archive/2004/01/02/47184.aspx
http://msdn.microsoft.com/library/en-us/vccore98/html/_core___stdcall.asp
http://msdn.microsoft.com/library/en-us/vccore98/html/_core___fastcall.asp
http://msdn.microsoft.com/library/en-us/vccore98/html/_core_thiscall.asp


2/2

encodes the types of each of the parameters, among other things. This is necessary because

C++ permits function overloading, so a complex decoration scheme must be used so that the

various overloads have different decorated names.

There are some nice diagrams on MSDN illustrating some of these calling conventions.

Remember that a calling convention is a contract between the caller and the callee. For those

of you crazy enough to write in assembly language, this means that your callback functions

need to preserve the registers mandated by the calling convention because the caller (the

operating system) is relying on it. If you corrupt, say, the EBX register across a call, don’t be

surprised when things fall apart on you. More on this in a future entry.

Raymond Chen

Follow







http://msdn.microsoft.com/library/en-us/vccore98/html/_core_results_of_calling_example.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

