
1/3

January 2, 2004

The history of calling conventions, part 1
devblogs.microsoft.com/oldnewthing/20040102-00

Raymond Chen

The great thing about calling conventions on the x86 platform is that there are so many to

choose from!
In the 16-bit world, part of the calling convention was fixed by the instruction

set: The BP register defaults to the SS selector, whereas the other registers default to the DS

selector. So the BP register was necessarily the register used for accessing stack-based

parameters.
The registers for return values were also chosen automatically by the instruction

set. The AX register acted as the accumulator and therefore was the obvious choice for

passing the return value. The 8086 instruction set also has special instructions which treat

the DX:AX pair as a single 32-bit value, so that was the obvious choice to be the register pair

used to return 32-bit values.
That left SI, DI, BX and CX.
(Terminology note: Registers that

do not need to be preserved across a function call are often called “scratch”.)
When deciding

which registers should be preserved by a calling convention, you need to balance the needs of

the caller against the needs of the callee. The caller would prefer that all registers be

preserved, since that removes the need for the caller to worry about saving/restoring the

value across a call. The callee would prefer that no registers be preserved, since that removes

the need to save the value on entry and restore it on exit.
If you require too few registers to be

preserved, then callers become filled with register save/restore code. But if you require too

many registers to be preserved, then callees become obligated to save and restore registers

that the caller might not have really cared about. This is particularly important for leaf

functions (functions that do not call any other functions).
The non-uniformity of the x86

instruction set was also a contributing factor. The CX register could not be used to access

memory, so you wanted to have some register other than CX be scratch, so that a leaf

function can at least access memory without having to preserve any registers. So BX was

chosen to be scratch, leaving SI and DI as preserved.

So here’s the rundown of 16-bit calling conventions:

All

All calling conventions in the 16-bit world preserve registers BP, SI, DI (others scratch) and

put the return value in DX:AX or AX, as appropriate for size.

C (__cdecl)

https://devblogs.microsoft.com/oldnewthing/20040102-00/?p=41213


2/3

Functions with a variable number of parameters constrain the C calling convention

considerably. It pretty much requires that the stack be caller-cleaned and that the parameters

be pushed right to left, so that the first parameter is at a fixed position relative to the top of

the stack. The classic (pre-prototype) C language allowed you to call functions without telling

the compiler what parameters the function requested, and it was common practice to pass

the wrong number of parameters to a function if you “knew” that the called function wouldn’t

mind. (See “open” for a classic example of this. The third parameter is optional if the second

parameter does not specify that a file should be created.)

In summary: Caller cleans the stack, parameters pushed right to left.

Function name decoration consists of a leading underscore. My guess is that the leading

underscore prevented a function name from accidentally colliding with an assembler

reserved word. (Imagine, for example, if you had a function called “call”.)

Pascal (__pascal)

Pascal does not support functions with a variable number of parameters, so it can use the

callee-clean convention. Parameters are pushed from left to right, because, well, it seemed

the natural thing to do. Function name decoration consists of conversion to uppercase. This

is necessary because Pascal is not a case-sensitive language.

Nearly all Win16 functions are exported as Pascal calling convention. The callee-clean

convention saves three bytes at each call point, with a fixed overhead of two bytes per

function. So if a function is called ten times, you save 3*10 = 30 bytes for the call points, and

pay 2 bytes in the function itself, for a net savings of 28 bytes. It was also fractionally faster.

On Win16, saving a few hundred bytes and a few cycles was a big deal.

Fortran (__fortran)

The Fortran calling convention is the same as the Pascal calling convention. It got a separate

name probably because Fortran has strange pass-by-reference behavior.

Fastcall (__fastcall)

The Fastcall calling convention passes the first parameter in the DX register and the second

in the CX register (I think). Whether this was actually faster depended on your call usage. It

was generally faster since parameters passed in registers do not need to be spilled to the

stack, then reloaded by the callee. On the other hand, if significant computation occurs

between the computation of the first and second parameters, the caller has to spill it anyway.

To add insult to injury, the called function often spilled the register into memory because it

needed to spare the register for something else, which in the “significant computation

between the first two parameters” case means that you get a double-spill. Ouch!

Consequently, __fastcall was typically faster only for short leaf functions, and even then it

might not be.

Okay, those are the 16-bit calling conventions I remember. Part 2 will discuss 32-bit calling

conventions, if I ever get around to writing it.

http://www.bridgespublishing.com/articles/issues/0004/When_to_use___fastcall.htm


3/3

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

