
1/2

January 1, 2004

Don't trust the return address
devblogs.microsoft.com/oldnewthing/20040101-00

Raymond Chen

Sometimes people ask, “So I know how to get my return address
[use
the _ReturnAddress()

intrinsic];
how do I figure out what DLL that return address belongs to?”

Beware.

Even if you figure out which DLL the return address belongs to
[use
GetModuleHandle-

Ex(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS)],
that doesn’t mean that that

is actually the DLL that called you.

A common trick is to search through a “trusted” DLL for some code
bytes that coincidentally

match ones you (the attacker) want to execute.
This can be something as simple as a “retd”

instruction, which
are quite abundant. The attacker then builds a stack frame that
looks like

this, for, say, a function that takes two parameters.

trusted_retd

hacked parameter 1

hacked parameter 2

hacker_code_addr


After building this stack frame, the attacker then jumps to
the start of the function being

attacked.

The function being attacked looks
at the return address and sees trusted_retd ,
which

resides in a trusted DLL. It then foolishly trusts the
caller and allows some unsafe operation

to occur, using
hacked parameters 1 and 2. The function being attacked then
does a “retd 8”

to return and clean the parameters.
This transfers control to the trusted_retd ,
which

performs a simple retd , which now gives
control to the hacker_code_addr , and the

hacker
can use the result to continue his nefarious work.

This is why you should be concerned if somebody says,
“This code verifies that its caller is

trusted…”
How do they know who the caller really is?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20040101-00/?p=41223
http://msdn.microsoft.com/en-us/library/64ez38eh(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683200(v=vs.100).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


2/2








