
1/3

December 12, 2003

Why are structure sizes checked strictly?
devblogs.microsoft.com/oldnewthing/20031212-00

Raymond Chen

You may have noticed that Windows as a general rule
checks structure sizes strictly.
For

example, consider the MENUITEMINFO structure:

typedef struct tagMENUITEMINFO {

 UINT cbSize;

 UINT fMask;

 UINT fType;

 UINT fState;

 UINT wID;

 HMENU hSubMenu;

 HBITMAP hbmpChecked;

 HBITMAP hbmpUnchecked;

 ULONG_PTR dwItemData;

 LPTSTR dwTypeData;

 UINT cch;

#if(WINVER >= 0x0500)

 HBITMAP hbmpItem; // available only on Windows 2000 and higher

#endif

} MENUITEMINFO, *LPMENUITEMINFO;

Notice that the size of this structure changes
depending on whether WINVER >= 0x0500

(i.e., whether you are targetting Windows 2000 or higher).
If you take the Windows 2000

version of this structure
and pass it to Windows NT 4,
the call will fail since the sizes don’t

match.

“But the old version of the operating system
should accept any size that is greater than or

equal to
the size it expects.
A larger value means that the structure
came from a newer

version of the program,
and it should just ignore the parts it doesn’t understand.”

We tried that. It didn’t work.

Consider the following imaginary sized structure
and a function that consumes it.
This will be

used as the guinea pig for the discussion to follow:

https://devblogs.microsoft.com/oldnewthing/20031212-00/?p=41523

2/3

typedef struct tagIMAGINARY {

 UINT cbSize;

 BOOL fDance;

 BOOL fSing;

#if IMAGINARY_VERSION >= 2

 // v2 added new features

 IServiceProvider *psp; // where to get more info

#endif

} IMAGINARY;

// perform the actions you specify

STDAPI DoImaginaryThing(const IMAGINARY *pimg);

// query what things are currently happening

STDAPI GetImaginaryThing(IMAGINARY *pimg);

First, we found lots of programs which simply
forgot to initialize the cbSize member

altogether.

IMAGINARY img;

img.fDance = TRUE;

img.fSing = FALSE;

DoImaginaryThing(&img);

So they got stack garbage as their size.
The stack garbage happened to be a large number,
so

it passed the
“greater than or equal to the expected cbSize ” test
and the code worked.
Then

the next version of the header file expanded the structure,
using the cbSize to detect

whether the caller is using the old or new style.
Now, the stack garbage is still greater than or

equal to
the new cbSize ,
so version 2 of DoImaginaryThing says,
“Oh cool, this is

somebody who wants to provide additional information
via the IServiceProvider field.”

Except of course that it’s stack garbage,
so calling the IServiceProvider::QueryService

method crashes.

Now consider this related scenario:

IMAGINARY img;

GetImaginaryThing(&img);

The next version of the header file expanded the structure,
and the stack garbage happened

to be a large number,
so it passed the
“greater than or equal to the expected cbSize ” test,

so it returned not just the fDance and
 fSing flags, but also returned an
 psp .
Oops, but

the caller was compiled with v1, so its structure
doesn’t have a psp member.
The psp gets

written past the end of the structure,
corrupting whatever came after it in memory.
Ah, so

now we have one of those dreaded buffer overflow bugs.

Even if you were lucky and the memory that came afterwards was
safe to corrupt, you still

have a bug: By the rules of COM
reference counts, when a function returns an interface

pointer,
it is the caller’s responsibility to release the pointer when
no longer needed.
But the

3/3

v1 caller doesn’t know about this psp member,
so it certainly doesn’t know that it needs to

be
 psp->Release() d. So now, in addition to memory
corruption (as if that wasn’t bad

enough), you also have a memory
leak.

Wait, I’m not done yet. Now let’s see what happens when a program
written in the future

runs on an older system.

Suppose somebody is writing their program intending it to be run on v2.
They set the

cbSize to the larger v2 structure size
and set the psp member to a service provider
that

performs security checks before allowing any
singing or dancing to take place.
(E.g., makes

sure everybody paid the entrance fee.)
Now somebody takes this program and runs it on v1.

The new v2 structure size passes the
“greater than or equal to the v1 structure size” test,
so v1

will accept the structure and Do the ImaginaryThing.
Except that v1 didn’t support the psp

field,
so your service provider never gets called
and your security module is bypassed.
Now

everybody is coming into your club without paying.

Now, you might say, “Well those are just buggy programs.
They deserve to lose.”
If you stand

by that logic, then prepare to take the heat
when you read magazine articles like
“Microsoft

intentionally designed <Product X>
to be incompatible with <software from a major

competitor>.
Where is the Justice Department when you need them?”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

