
1/2

November 11, 2003

Safer subclassing
devblogs.microsoft.com/oldnewthing/20031111-00

Raymond Chen

So what was wrong with our
little subclassing sketch?

Most people figured this out.

Consider what would happen if somebody else had subclassed the window during the “…
do

stuff …” section. When we unsubclassed the window, we would have removed two

subclasses,
the one we installed, and the one that was installed after us. If the other subclass

allocated memory (which is very common), then that memory got leaked, in addition
to the

subclass failing to do whatever it was trying to do.

Do not assume that subclasses are added and removed in a purely stack-like manner.
If you

want to unsubclass and find that you are not the window procedure at the top
of the chain

you cannot safely unsubclass. You will have to leave
your subclass attached until it

becomes safe to unsubclass. Until that time, you just
have to keep passing the messages

through to the previous procedure.

This is quite a cumbersome process, so the shell team wrote some helper functions
to do all

this for you. The SetWindowSubclass
function does all the grunt work of installing a subclass

procedure, remembering
the previous one, and passing reference data to the subclass

procedure you provide.
You use the DefSubclassProc
function to forward the message to the

previous subclass procedure, and when you’re
done, you use the RemoveWindowSubclass

function to remove yourself from the chain. RemoveWindowSubclass does all the
work to do

the right thing if you are not the window procedure at the top of the chain.

One gotcha that isn’t explained clearly in the documentation is that you must
remove

your window subclass before the window being subclassed is destroyed.
This is

typically done either by removing the subclass once your temporary need has
passed, or if

you are installing a permanent subclass, by inserting a call to RemoveWindowSubclass
inside

the subclass procedure itself:

https://devblogs.microsoft.com/oldnewthing/20031111-00/?p=41883
http://blogs.gotdotnet.com/raymondc/PermaLink.aspx/45113814-5b31-4f47-a1c5-6013350df2d2
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/userex/subclassingcontrols.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/shell/reference/functions/defsubclassproc.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/removewindowsubclass.asp

2/2

...

case WM_NCDESTROY:

 RemoveWindowSubclass(hwnd, thisfunctionname, uIdSubclass);

 return DefSubclassProc(...);

One comment expressed concern that a message could be sent between the call to

SubclassWindow and
the store of the previous window procedure into the OldWndProc

variable.
This is actually a safe operation provided that you are doing the work from the

thread
that owns the window you are subclassing. Remember that message delivery occurs

only
when the thread is in a receiving state, such as when it calls GetMessage or

PeekMessage .
If somebody sends a message when the thread is not in a receiving state, the

message
merely waits until the thread finally calls GetMessage (for example)
before being

delivered. Since we don’t make any message-receiving function calls between
the

SubclassWindow and the store into OldWndProc , there
is no risk of an untimely message

arriving before the store to OldWndProc has
occurred.

There was another comment that claimed that the SubclassWindow macro
is

undocumented. Actually this macro is so old that the
documentation for it has faded almost

into obscurity. (You forced my hand;
I wasn’t
going to dig into this header file until

tomorrow!)

Raymond Chen

Follow

http://community.borland.com/article/0,1410,17542,00.html
https://devblogs.microsoft.com/oldnewthing/archive/2003/11/12/55659.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

