
1/5

March 8, 2022

Windows API hooking part 2. Simple C++ example.
cocomelonc.github.io/tutorial/2022/03/08/basic-hooking-2.html

2 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

what is API hooking?

API hooking is a technique by which we can instrument and modify the behaviour and flow of
API calls. This technique is also used by many AV solutions to detect if code is malicious.

The easiest way of hooking is by inserting a jump instruction. In this post I will show you
another technique.

This method is six bytes in total, and looks like the following.

The push instruction pushes a 32bit value on the stack, and the retn instruction pops a 32bit
address off the stack into the Instruction Pointer (in other words, it starts execution at the
address which is found at the top of the stack.)

example 1

https://cocomelonc.github.io/tutorial/2022/03/08/basic-hooking-2.html
https://cocomelonc.github.io/tutorial/2021/11/30/basic-hooking-1.html


2/5

Let’s look at an example. In this case I can hook a function WinExec from kernel32.dll
(hooking.cpp):



3/5

/*
hooking.cpp

basic hooking example with push/retn method

author: @cocomelonc

https://cocomelonc.github.io/tutorial/2022/03/08/basic-hooking-2.html

*/
#include <windows.h>


// buffer for saving original bytes

char originalBytes[6];


FARPROC hookedAddress;


// we will jump to after the hook has been installed

int __stdcall myFunc(LPCSTR lpCmdLine, UINT uCmdShow) {

 WriteProcessMemory(GetCurrentProcess(), (LPVOID)hookedAddress, originalBytes, 6, 
NULL);

 return WinExec("mspaint", uCmdShow);

}


// hooking logic

void setMySuperHook() {

 HINSTANCE hLib;

 VOID *myFuncAddress;

 DWORD *rOffset;

 DWORD *hookAddress;

 DWORD src;

 DWORD dst;

 CHAR patch[6]= {0};


 // get memory address of function WinExec

 hLib = LoadLibraryA("kernel32.dll");

 hookedAddress = GetProcAddress(hLib, "WinExec");


 // save the first 6 bytes into originalBytes (buffer)
 ReadProcessMemory(GetCurrentProcess(), (LPCVOID) hookedAddress, originalBytes, 6, 
NULL);


 // overwrite the first 6 bytes with a jump to myFunc

 myFuncAddress = &myFunc;


 // create a patch "push <addr>, retn"

 memcpy_s(patch, 1, "\x68", 1); // 0x68 opcode for push

 memcpy_s(patch + 1, 4, &myFuncAddress, 4);

 memcpy_s(patch + 5, 1, "\xC3", 1); // opcode for retn


 WriteProcessMemory(GetCurrentProcess(), (LPVOID)hookedAddress, patch, 6, NULL);

}


int main() {


 // call original




4/5

 WinExec("notepad", SW_SHOWDEFAULT);


 // install hook

 setMySuperHook();


 // call after install hook

 WinExec("notepad", SW_SHOWDEFAULT);


}


As you can see, the source code is identical to the example from the first post about hooking.
The only difference is:

That will translate into the following assembly instructions:

// push myFunc memory address onto the stack

push myFunc


// jump to myFunc

retn


Let’s go to compile it:

i686-w64-mingw32-g++ -O2 hooking.cpp -o hooking.exe -mconsole -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-
exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive 
>/dev/null 2>&1


https://cocomelonc.github.io/tutorial/2021/11/30/basic-hooking-1.html


5/5

And run on Windows 7 x64:

.\hooking.exe


As you can see everything is worked perfectly :)

x86 API Hooking Demystified 
WinExec 
source code in github

This is a practical case for educational purposes only.

Thanks for your time happy hacking and good bye! 

PS. All drawings and screenshots are mine






http://jbremer.org/x86-api-hooking-demystified/
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-winexec
https://github.com/cocomelonc/meow/tree/master/2022-03-08-basic-hooking-2

