
1/11

December 11, 2021

Code injection via undocumented Native API functions.
Simple C++ example.

cocomelonc.github.io/tutorial/2021/12/11/malware-injection-11.html

2 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

In the previous posts I wrote about DLL injection via undocumented NtCreateThreadEx and
NtAllocateVirtualMemory.

The following post is a result of self-research of malware development technique which is
interaction with the undocumented Native API.

Today I tried to replace another function OpenProcess with undocumented Native API
function NtOpenProcess.

First of all, let’s take a look at function NtOpenProcess syntax:

https://cocomelonc.github.io/tutorial/2021/12/11/malware-injection-11.html
https://cocomelonc.github.io/tutorial/2021/12/06/malware-injection-9.html
https://cocomelonc.github.io/tutorial/2021/12/07/malware-injection-10.html

2/11

__kernel_entry NTSYSCALLAPI NTSTATUS NtOpenProcess(

 [out] PHANDLE ProcessHandle,

 [in] ACCESS_MASK DesiredAccess,

 [in] POBJECT_ATTRIBUTES ObjectAttributes,

 [in, optional] PCLIENT_ID ClientId

);

Here it is worth paying attention to the ObjectAttributes and ClientId parameters.
ObjectAttributes - a pointer to an OBJECT_ATTRIBUTES structure that specifies the
attributes to apply to the process object handle. This has to be defined and initialized prior to
opening the handle. ClientId - a pointer to a client ID that identifies the thread whose
process is to be opened.

In order to use NtOpenProcess function, we have to define its definition in our code:

Similarly, OBJECT_ATTRIBUTES and PCLIENT_ID need to be defined. These structures are
defined under NT Kernel header files.

We can run WinDBG in local kernel mode and run:

dt nt!_OBJECT_ATTRIBUTES

3/11

Then run:

dt nt!_CLIENT_ID

4/11

and:

dt nt!_UNICODE_STRING

There is one more caveat. Before returning the handle by the NtOpenProcess function/
routine, the Object Attributes need to be initialized which can be applied to the handle. To
initialize the Object Attributes an IntitializeObjectAttributes macro is defined and

5/11

invoked which specifies the properties of an object handle to routines that open handles.

IntitializeObjectAttributes

Then, loading the ntdll.dll library to invoke NtOpenProcess:

https://docs.microsoft.com/en-us/windows/win32/api/ntdef/nf-ntdef-initializeobjectattributes

6/11

And then get starting addresses of the our functions:

And finally open process:

And otherwise the main logic is the same.

7/11

As shown in this code, the Windows API call OpenProcess can be replaced with Native API
call function NtOpenProcess. But we need to define the structures which are defined in the
NT kernel header files.

The downside to this method is that the function is undocumented so it may change in the
future.

Let’s go to see our simple malware in action. Compile hack.cpp:

x86_64-w64-mingw32-g++ hack.cpp -o hack.exe -mconsole -I/usr/share/mingw-w64/include/
-s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-
all-constants -static-libstdc++ -static-libgcc -fpermissive

Then, run process hacker 2:

8/11

For example, the highlighted process mspaint.exe is our victim.

Let’s run our simple malware:

.\hack.exe 4964

9/11

As you can see our meow-meow messagebox is popped-up.

Let’s go to investigate properties of our victim process PID: 4964:

10/11

As you can see, our meow-meow payload successfully injected as expected!

As you can see the main logic is the same with previous NT API function call techniques but
there is a caveat with defining the structures and associated parameters. Without defining
this structures the code will not run.

The reason why it’s good to have this technique in your arsenal is because we are not using
OpenProcess which is more popular and suspicious and which is more closely investigated
by the blue teamers.

Let’s go to upload our new hack.exe with encrypted command to Virustotal (13.12.2021):

11/11

https://www.virustotal.com/gui/file/9f4213643891fc14473948deb15077d9b7b4d2da3db46793
2e57e7e383e535e6?nocache=1

So, 5 of 65 AV engines detect our file as malicious.

If we want, for better result, we can add payload encryption with key or obfuscate functions,
or combine both of this techniques.

I hope this post spreads awareness to the blue teamers of this interesting technique, and
adds a weapon to the red teamers arsenal.

WinDBG kernel debugging
VirtualAllocEx
NtOpenProcess
NtAllocateVirtualMemory
WriteProcessMemory
CreateRemoteThread
source code in Github

This is a practical case for educational purposes only.

Thanks for your time and good bye!

PS. All drawings and screenshots are mine

https://www.virustotal.com/gui/file/9f4213643891fc14473948deb15077d9b7b4d2da3db467932e57e7e383e535e6?nocache=1
https://cocomelonc.github.io/tutorial/2021/09/04/simple-malware-av-evasion.html
https://cocomelonc.github.io/tutorial/2021/09/06/simple-malware-av-evasion-2.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/performing-local-kernel-debugging
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-ntopenprocess
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntallocatevirtualmemory
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://github.com/cocomelonc/meow/tree/master/2021-12-11-malware-injection-11

