Windows shellcoding - part 2. Find kernel32 address
@

October 30, 2021

5 minute read

Hello, cybersecurity enthusiasts and white hackers!

J— 0 0_30 —
File Edit View Selection Find Packages H &
kemnel.asm
'?J Zh\workikernel.exe - WinDbg:6.3.9600.16284 X86 o[|
File Edit View Debug Window Help
=2 (sl = Brd |0 EREEOREEODE |50 A e
Disassembly EE | Memory [E= Registers =[x

Previous MNext: Virtual: @==p Previous Customize...

Display form:

section .

section .bss

section .text
global _start

Memory B

start:

Previous
Display format: | Pointer

Ol e &|®| =] e@ﬁ\@@i
{: & & 0B i G @ ® richt col
2 10 20 % 01 11l 2

Ln@, Col0 SysO:<Local> Proc000:5e4 Thrd[92% available (plugged in, chargmgq

In the first part of my post about windows shellcoding we found the addresses of kernel32
and functions using the following logic:

1/11

https://cocomelonc.github.io/tutorial/2021/10/30/windows-shellcoding-2.html
https://cocomelonc.github.io/tutorial/2021/10/27/windows-shellcoding-1.html

/*

getaddr.c - get addresses of functions
(ExitProcess, WinExec) in memory

*/

#include <windows.h>

#include <stdio.h>

int main() {

unsigned long Kernel32Addr; // kernel32.dll address
unsigned long ExitProcessAddr; // ExitProcess address
unsigned long WinExecAddr; // WinExec address

Kernel32Addr = GetModuleHandle("kernel32.d11l");
printf("KERNEL32 address in memory: 0x%08p\n'", Kernel32Addr);

ExitProcessAddr = GetProcAddress(Kernel32Addr, "ExitProcess");
printf("ExitProcess address in memory is: 0x%08p\n", ExitProcessAddr);

WinExecAddr = GetProcAddress(Kernel32Addr, "WinExec");
printf("WinExec address in memory is: 0x%08p\n", WinExecAddr);

getchar();

return 0,

Then we entered the found address into our shellcode:

; void ExitProcess([in] UINT uExitCode);

Xor eax, eax ; zero out eax

push eax ; push NULL

mov eax, Ox76ed214f ; call ExitProcess function addr in kernel32.dll
jmp eax ; execute the ExitProcess function

The caveat is that the addresses of all DLLs and their functions change upon reboot and
differ in each system. For this reason, we cannot hard-code any addresses in our ASM code:

2/11

T

Computer wvulnserver

Metwork Customer...

Recycle Bin v

brainpan

4 Windows PowerShell

PS C:osUsersstestS\Documents?» _“getaddr.exe
KERNEL32 address in memory: BOx76fdBEBA
ExitProcess address in memory is: Bx?702214f
WinExec address in memory is: Bx778%ehfd

PS8 C:=sUsersstestSDocuments> _

First of all, how do we find the address of kernel32.d11?

TEB and PEB structures

R P [l o5 - FRD

Whenever we execute any exe file, the first thing that is created (at least to my knowledge) in

the OS are PEB:

3/11

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

typedef struct _PEB {

BYTE Reservedl[2];

BYTE BeingDebugged;

BYTE Reserved2[1];

PVOID Reserved3[2];
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID Reserved4[3];

PVOID AtlThunkSListPtr;
PVOID Reserved5;

ULONG Reserved6;

PVOID Reserved7;

ULONG Reserved8;

ULONG AtlThunkSListPtr32;
PVOID Reserved9[45];

BYTE Reservedl10[96];
PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
BYTE Reserved11[128];
PVOID Reserved12[1];
ULONG Sessionld;

} PEB, *PPEB;

and TEB:

typedef struct _TEB {
PVOID Reservedl[12];
PPEB ProcessEnvironmentBlock;
PVOID Reserved2[399];
BYTE Reserved3[1952];
PVOID TlsSlots[64];
BYTE Reserved4[8];
PVOID Reserved5[26];
PVOID ReservedForOle;
PVOID Reserved6[4];
PVOID TlsExpansionSlots;

} TEB, *PTEB;

PEB - process structure in windows, filled in by the loader at the stage of process creation,
which contains the information necessary for the functioning of the process.

TEB is a structure that is used to store information about threads in the current process, each
thread has its own TEB.

Let’s open some program in the windbg debugger and run command:

dt _teb

4/11

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-teb

Command Bl

EnvironmentPointer

3 ClientId : _CLIENT_ID
Ptr32 Void
~32 Void
_PEB

LastErrorValue : Uint4B

As we can see, PEB has an offset of 9x030. Similarly, we can see the contents of the PEB
structure using command:

dt _peb

| 4

Command
©:800> dt _peb
ntdll!_PE
B InheritedAdd Space : UChar
+6 adImageFileExecOptions : UChar
UChar
UChar

In Col0 ¢

We now need to look at the member that is at an offset of oxeoc from the base of the PEB
structure, which is the PEB_LDR_DATA. PEB_LDR_DATA contains information about the
loaded modules for the process.

Then, we can also examine PEB_LDR_DATA structure via windbg:

dt _PEB_LDR_DATA

Command FJE
TracingFlag : Uint4B

HeapTracingEnabled : Po
nabled : Po

. _LIST_ENTRY
dulelist : _LIST_ENTRY

EntryInPr
3 ShutdownInPr
ShutdownThr

5/11

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data

Here we can see that the offset of InLoadOrderModulelList is 0x00c,
InMemoryOrderModuleList is ©x014, and InInitializationOrderModuleList is Ox01c.

InMemoryOrderModuleList is a doubly linked list where each list item points to an
LDR_DATA TABLE_ENTRY structure, so Windbg suggests the structure type is LIST _ENTRY.

Before we continue let’s run the command:

Ipeb

4 [T 3

Command el

ulelist:

As we can see, LDR (PEB structure) address is - 77328880.

Now to see the addresses of the InLoadOrderModulelList, InMemoryOrderModulelList and
InInitializationOrderModulelList run the command:

dt _PEB_LDR_DATA 77328880

This will show us the corresponding start addresses and end addresses of linked lists:

ilogfile.log

TLIST_ENTRY [
_LIST_ENTRY

Ln0, Col0 SysD:<Local>

6/11

Let’s try to view the modules loaded into the LDR_DATA_TABLE_ENTRY structure, and we will
also indicate the starting address of this structure at ©x5119f8 so that we can see the base
addresses of the loaded modules. Remember that 0x5119f8 is the address of this structure,
so the first entry will be 8 bytes less than this address:

dt _LDR_DATA_TABLE_ENTRY 0x5119f8-8

Memory
Virtual

Displa:

Ln0, Col0 Sysli<lLocal> Proc(

T T T

As you can see BaseD11Name is our exit.exe. This is exe | executed.

Also, you can see that the InMemoryOrderLinks address is now 0x511a88. D11Base at offset
0x018 contains the base address BaseD11Name. Now our next loaded module should be 8
bytes away from 0x511a88, namely 0x5119f8-8:

dt _LDR_DATA_TABLE_ENTRY 0x5119f8-8

LDR_DATA_TABLE_ENTRY ©x511a88-8

Memo
Virtu

Disp

Ln0, Col0 SysO:<Local> Proc

As you can see BaseDl11Name is ntd11.d1l. It's address is 0x77250000 and the next module
is 8 bytes after ox511e58. So, then:

dt _LDR_DATA_TABLE_ENTRY 0x511e58-8

7/11

4

Command

9: > dt
ntdl1l!_LD

_LIST_ENTRY [
: _LIST_ENTRY [©

e Mermor
11Name s L] : 3 ; Virtuz
Displz

Ln0, Col0 Sys(:<Lecal> Proc

As you can see our third module is kernel32.d11 and it's address is 0x76fdo000, offset is
0x018. To make sure that it is correct, we can run our getaddr . exe:

Display format: | Byte

Q ‘Windows PowerShell

PSS C:sUsershtest\Documents? Soetadds exe
[KERNEL32 addre in memory: Bx76fd 5
ExitProcess addr in menory 1s: Wx7/W2214F
MinExec addr in memory is: Bx??@5e5fd

_LDR_DATA_TABLE_ENTRY 8x511e58-8 [N S

DATA TABLE R -
LIST_ENTRY [©

1F7

_ENTRY [

This module loading order will always be fixed (at least to my knowledge) for Windows 10, 7.

So when we write in ASM, we can go through the entire PEB LDR structure and find the
kernel32.d11 address and load it into our shellcode.

As | wrote in the first part, The next module should be kernelbase.d11. Just for experiment,
to make sure that it is correct, we can run:

dt _LDR_DATA_TABLE_ENTRY 0x511f70-8

8/11

https://cocomelonc.github.io/tutorial/2021/10/27/windows-shellcoding-1.html

[« [

Command

©:000> [

Thus, the following is obtained:

~NOo obrh WwN -

m

UNT

ERNELBASE.d11"

_UNICODE_STRIN

_LDR_DATA_TABLE_ENTRY ©x5

Ln0, Col0 SysO:<Local> F

. offset to the PEB struct is 0x030

. offset to LDR within PEB is 0x00c

. offset to InMemoryOrderModulelList is Ox014
. 1st loaded module is our .exe

. 2nd loaded module is ntd11.d11

. 3rd loaded module is kernel32.d11

. 4th loaded module is kernelbase.d11l

In all recent versions of the Windows OS (at least to my knowledge), the FS register points to
the TEB. Therefore, to get the base address of our kernel32.d11 (kernel.asm):

; find kernel32
; author @cocomelonc

; nasm -f win32

-0 kernel.o kernel.asm

; 1d -m 1386pe -0 kernel.exe kernel.o
; 32-bit windows

section .data
section .bss
section .text

global _start

_start:

mov
mov
mov
mov
mov
mov

eax,
eax,
eax,
eax,
eax,
eax,

[fs:ecx + 0x30]
[eax + Oxc]
[eax + 0x14]
[eax]

[eax]

[eax + 0x10]

must be declared for linker

offset to the PEB struct

offset to LDR within PEB

offset to InMemoryOrderModulelList

kernel.exe address loaded in eax (1st module)
ntdll.dll address loaded (2nd module)
kernel32.dll address loaded (3rd module)

9/11

With this assembly code we can find the kernel32.d11 address and store it in EAX register,
so compile it:

nasm -f win32 -o kernel.o kernel.asm

1d

-m 1386pe -0 kernel.exe kernel.o

kali@kali:~projects/cybersec_blog/2021-10-30-windows-shellcoding-2

File Actions Edit

View Help
kali@kali:~/pr...-shellcoding-2 &

kaligkali
kaligkali
kaligkali

kali@kali:~ ® mc[kali@kali]..-shellcoding-2 &
1 =f win32 -0 kernel.o kernel.asm
-m i386pe -o kernel.exe kernel.o
-1t

total 12

-rwxr-xr-x 1 kali kali 3389 Oct 30 19:26 kernel.exe
-rw-r—r—— 1 kali kali 361 Oct 3@ 19:26 kernel.o
-rw-r—r—— 1 kali kali 646 Oct 30 16:26 kernel.asm
kaliakali

Copy it and run it in debugger on windows 7:

&

8l C\Users\test\Documents\kernel.exe - WinDbg:6.3.9600.16384 X86
File Edit View Window Help

=2 [6o

Go Unhandled Exception

Go Handled Exception

Restart

= | B0EE0 00| EhAE

f

Previous

Disassembly
Offset: @3scop

2| Memory

Next

)&l Registers

Previous

Next

Virtual: @esp Customize...

Ctrl+Shift+F5

Eyte

Display format:

Stop Debugging Shift+F3 £
Detach Debuggee

Break Ctrl+Break

Step Into Fl1 or F8

Step Over Fl0

Step Out Shift+F11

Run to Cursor Ctrl+F10 or F7

v Source Mode

Resolve Unqualified Symbols

Event Filters...
Modules...

Memory
Virtual: @esp

Kernel Connection Display
Command \splay form

Ln0, Col0 SysO:<Local> Proc000:91c Thrd 000:948 74

Debug operations

Ol-le a3

run:

|

10/11

N0 EDE0EEB00E)| [A

E(=| | Memory [El=] | Registers

Previous Next Virtual: @==p Previous Customize..

Display format: | Evte - MNest
. .. — - e) Reg Value
QWindowsPowerShell EI@]
PS8 C:slUsersitest Documents> “Soetadde exe]
KERMEL32 addr in memory: Bx76fdBEEE
ExitProcess address in memory is: MWx'///H2214F _
VinExec address in memory is: Bx?785e5fd _
PS8 C:wUsersstestsDocuments> _
]
4 m
Memory
Virtual: @==p
Display forma

Ln0, Col0 SysMi<Local> Proc000:91c Thrd 000:948 AS

n' Sl

As you can see everything is worked perfectly!

The next step is to find the address of function (for example ExitProcess) using
LoadLibraryA and call the function. This will be in the next part.

This is a practical case for educational purposes only.

History and Advances in Windows Shellcode
PEB structure

TEB structure

PEB_LDR_DATA structure

The Shellcoder’s Handbook

windows shellcoding_part 1

Source code in Github

Thanks for your time, happy hacking and good bye!
PS. All drawings and screenshots are mine

11/11

http://www.phrack.org/archives/issues/62/7.txt
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-teb
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data
https://www.wiley.com/en-us/The+Shellcoder%27s+Handbook%3A+Discovering+and+Exploiting+Security+Holes%2C+2nd+Edition-p-9780470080238
https://cocomelonc.github.io/tutorial/2021/10/27/windows-shellcoding-1.html
https://github.com/cocomelonc/meow/tree/master/2021-10-30-windows-shellcoding-2

