
1/30

October 8, 2021

Malware analysis - part 2: My NASM tutorial.
cocomelonc.github.io/tutorial/2021/10/08/malware-analysis-2.html

18 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

NASM tutorial

So, I am continuing a series of articles dedicated to my journey in the study of malware
analysis.

In the last post in the series, I started learning examples in assembly language.

This tutorial will show you how to write assembly language programs on the x86 architecture,
but now I will also provide code examples that integrate with C language.

Once again, make sure we have both nasm and gcc installed:

nasm --version

gcc --version

https://cocomelonc.github.io/tutorial/2021/10/08/malware-analysis-2.html
https://cocomelonc.github.io/tutorial/2021/10/03/malware-analysis-1.html

2/30

Let’s go to repeat some instructions:

mov a, b ; copy b to a

and a, b ; copy "a logical AND b" to a

or a, b ; copy "a logical OR b" to a

xor a, b ; copy "a logical XOR b" to a

add a, b ; copy a + b to a

sub a, b ; copy a - b to a

inc a ; increment a (copy a + 1 to a)

dec a ; decrement a (copy a - 1 to a)

db ; pseudo-instruction that declares bytes

 ; will be in memory when the program runs

As i wrote earlier, in fact, most of the basic instructions have only the following forms:

mov eax, ebx ; copy register to register

mov ebx, [123] ; copy memory address to register

mov [123], eax ; copy register to memory address

mov eax, 0x12 ; copy immediate to register

mov [151], 0x55 ; copy immediate to memory address

Pseudo-instructions are things which, though not real x86 machine instructions, are used in
the instruction field anyway because that’s the most convenient place to put them:

db 0x55 ; just the byte 0x55

db 0x55,0x56,0x57 ; three bytes in succession

db 'a',0x55 ; character constants are OK

db 'hello',13,10,'$' ; so are string constants

dw 0x1234 ; 0x34 0x12

dw 'a' ; 0x61 0x00 (it's just a number)

dw 'ab' ; 0x61 0x62 (character constant)
dw 'abc' ; 0x61 0x62 0x63 0x00 (string)

dd 0x12345678 ; 0x78 0x56 0x34 0x12

dd 1.234567e20 ; floating-point constant

dq 0x123456789abcdef0 ; eight byte constant

dq 1.234567e20 ; double-precision float

dt 1.234567e20 ; extended-precision float

3/30

To reserve space (without initializing), you can use the following pseudo instructions. They
should go in a section called .bss (you’ll get an error if you try to use them in a .text
section):

buffer: resb 64 ; reserve 64 bytes

wordvar: resw 1 ; reserve a word

realarray: resq 10 ; array of ten reals

hello world

So what about our first practical example? Let’s start with the classic “Hello world” program:

; hello.asm: writes "hello world" to the console.

; author: @cocomelonc

; run:

; nasm -f elf32 -o hello.o hello.asm

; ld -m elf_i386 -o hello hello.o && ./hello

; 32-bit linux

section .text

 global _start

_start:

 mov eax, 0x4 ; system call for write

 mov ebx, 1 ; file handle 1 is stdout

 mov ecx, msg ; address of string to output

 mov edx, 12 ; number of bytes

 int 0x80 ; call kernel

_exit:

 mov eax, 0x1 ; sys_exit system call

 mov ebx, 0 ; exit code 0 successfull exec

 int 0x80 ; call sys_exit

section .data

 msg: db "hello world", 10 ; note the newline at the end

Compile and run:

nasm -f elf32 -o hello.o hello.asm

ld -m elf_i386 -o hello hello.o

./hello

4/30

As you can see everything work as expected. Our program writes “hello world” to the console
using only system calls. Let’s examine lines 12-16:

Everything is written in the comments to my code:
line 12: system call for write.
line 13: file descriptor (stdout).
line 14: message “hello world”.
line 15: number of bytes.
line 16: system interrupt call.

As for lines 19-21:

5/30

they are identical to the logic from an example from first post, it’s just normal exit logic.

I hope you haven’t forgotten about the instruction int 0x80. There is an int 0x80 instruction
in the assembler code. This is a system interrupt. When the processor receives interrupt
0x80, it performs the requested system call in kernel mode, while getting the desired handler
from the Interrupt Descriptor Table.

hello world via using C library

Let’s go to code our “hello world” example with using C library. Remember how in C
execution “starts” at the function main? That’s because the C library actually has the _start
label inside itself! The code at _start does some initialization, then it calls main, then it does
some clean up, then it issues the system call for exit. So you just have to implement main.
We can do that in assembly!

; hello.asm: writes "hello world" to the console by using C lib.

; author: @cocomelonc

; run:

; nasm -f elf32 -o hello2.o hello2.asm

; gcc -static -m32 -o hello2 hello2.o && ./hello2

; 32-bit linux

section .text

global main

extern puts

main: ; called by C lib startup code

 push msg ; address of string to output
 call puts ; puts (msg)

 add esp, 4 ; update stack pointer (1 argument 4 byte)

 xor eax, eax ; a faster way of setting eax to zero

 ret ; return from main back into C library wrapper

msg: db "hello world", 0 ; note strings must be terminated with 0 in C

which is equivalent in C:

#include <stdio.h>

int main(void) {

 puts ("hello world");

 return 0;

}

I think from the comments to the code everything should be clear, this is a simplest example:

on line 14, a call to the puts() function: call puts. Before this call, the address of the string
(or a pointer to it) with our “hello world” is pushed onto the stack using the push instruction.
After the puts() function returns control to the main() function, the address of the string (or

https://cocomelonc.github.io/tutorial/2021/10/03/malware-analysis-1.html

6/30

a pointer to it) is still on the stack. Since it is no longer needed, the stack pointer (esp
register) is updated. add esp, 4 means add 4 to the value in the ESP register. Why 4?
Because this is 32 bit code. After calling puts(), the original C code states return 0 - return
0 as the result of the main() function. In the generated code, this is provided by the
instruction: xor eax, eax

Let’s go to compile and run:

nasm -f elf32 -o hello2.o hello2.asm

gcc -static -m32 -o hello2 hello2.o

./hello2

As you can see again everything is good.
Let’s go to load this binary to gdb and debug:

gdb -q hello2

7/30

Let’s now cross-compile the C code:

#include <stdio.h>

int main(void) {

 puts ("hello world");

 return 0;

}

to an .exe file:

i686-w64-mingw32-gcc hello.c -o hello2.exe

Basic static analysis

8/30

Since I consider all my examples from the point of view of a malware analyst, let’s do a little
static analysis of our three files:

hello - compilation result of hello.asm:

hello2 - compilation result of hello2.asm:

and hello2.exe - cross-compilation result of hello.c:

9/30

Firstly, run:

file hello

file hello2

file hello2.exe

Then, run:

hexdump -C hello | head 20

hexdump -C hello2 | head 20

10/30

I hope you haven’t forgotten that hello and hello2 are ELF (Executable and Linkable
Format) files. What we see here?
As can be seen in this screenshot, the ELF header starts with some magic. This ELF header
magic provides information about the file. The first 4 hexadecimal parts define that this is an
ELF file (45=E,4c=L,46=F), prefixed with the 7f value.

This ELF header is mandatory. It ensures that data is correctly interpreted during linking or
execution. To better understand the inner working of an ELF file, it is useful to know this
header information is used.

Let’s see an hello2.exe:

hexdump -C hello2.exe | head 20

All the valid PE files contain the value of the first two-byte as 4D and 5A (“MZ” in ASCII),
named after Mark Zbikowsky, a well-known architect of MS-DOS. Under this header, includes
a list of structure.

Also all the valid PE files contain “PE” (Portable Executable).

Then, run:

strings -n 6 hello | head

strings -n 6 hello2 | head

strings -n 6 hello2.exe | head

11/30

As you can see all three files contain “hello world” string.

And then run:

objdump -D -M intel hello | head

12/30

then run:

objdump -D -M intel hello2 | head

and for exe file, run:

objdump -D -M intel hello2.exe | head

13/30

As you can see in this way you can also understand the file type by its headers.

If you run:

objdump -D -M intel hello2.exe | grep main.: -A11

I want to draw your attention to these instructions that I indicated in the screenshot. These 2
instructions save the previous base pointer ebp and set EBP to point at that position on the
stack (right below the return address). This sets up EBP as a frame pointer.

Some compilers may subtract the required space from the stack pointer after this two
instructions, then write each argument directly, see below:

push ebp

mov ebp, esp

sub esp, 12 ; if 3 arguments (4*3 bytes)

These 3 lines are known as the assembly function prologue. Now let’s look at an example
and you will immediately understand what does it mean. Let’s consider this C code:

#include <stdlib.h>

int main(void) {

 return 123;

}

This code in assembler will look like this:

14/30

; example1.asm

; author: @cocomelonc

; run:

; nasm -f elf32 -o example1.o example1.asm

; gcc -static -m32 -o example1 example1.o

; 32-bit linux

section .text

 global main

main:

 push ebp

 mov ebp, esp

 mov eax, 123

 mov esp, ebp

 pop ebp

 ret

section .data

Let’s check. Firstly, compile, then run objdump:

nasm -felf32 -o example1.o example1.asm

gcc -static -m32 -o example1 example1.o

objdump -D -M intel example1 | grep main.: -A11

I want to draw your attention to these instructions that I indicated in the screenshot. This is
called the assembly function epilogue. The function epilogue invalidates the allocated stack
space, restores the EBP value to the old one, and returns control to the calling function.

If you compile and disassembly C code:

i686-w64-mingw32-gcc example1.c -o example1.exe

objdump -D -M intel example1.exe | grep main.: -A11

15/30

Stop! But we see leave instruction. The leave instruction does exactly what these two
instructions do, and is used by some compilers to save code size. (enter 0,0 is very slow and
never used; leave is about as efficient as mov + pop.)

Prologue and epilogue are usually found in disassemblers to separate functions from each
other.

memory addressing modes

Let’s go to examine another example:

#include <stdlib.h>

int addMe(int a, int b) {

 return a + b;

}

int main(void) {

 addMe(2, 3);

 return 0;

}

Let’s see how it’ll be look on x86 assembly language:

16/30

; example2.asm

; author: @cocomelonc

; run:

; nasm -f elf32 -o example2.o example2.asm

; gcc -static -m32 -o example2 example2.o

; 32-bit linux

section .text

 global main

; make new call frame (addMe)

addMe:

 push ebp ; save old call frame

 mov ebp, esp ; initialize new call frame

 mov eax, 0 ; move 0 to eax

 mov edx, [ebp + 8] ; move second arg to edx

 mov eax, [ebp + 12] ; move first arg to eax

 add eax, edx ; add to result

 pop ebp ; restore call frame

 ret ; return (to main)

; make new call frame (main)

main:

 push ebp ; save old call frame

 mov ebp, esp ; initialize new call frame

 push 3 ; push call arguments in reverse

 push 2 ; push 2

 call addMe ; call function addMe

 xor eax, eax ; mov eax, 0

 ; restore old call frame

 ; some compilers may produce a 'leave' instruction instead

 mov esp, ebp

 pop ebp ; restore old call frame

 ret

section .data

Let’s go to compile and run objdump:

nasm -f elf32 -o example2.o example2.asm

gcc -static -m32 -o example2 example2.o

objdump -D -M intel example2 | grep main.: -A11 | head -n 20

17/30

and if we run:

objdump -D -M intel example2 | grep addMe.: -A11 | head -n 20

as you can see after insructions:

push 3

push 2

we go to function addMe in address 08049d00.

Let’s go to debug with gdb:

gdb -q ./example2

gdb-peda$ b main

gdb-peda$ r

18/30

next steps:

gdb-peda$ si

gdb-peda$ disas

19/30

as you can see, push arguments, and we are in function main now.
Then next steps:

gdb-peda$ si

gdb-peda$ disas

20/30

and repeat once again:

and we are call subroutine addMe. And a few more steps:

21/30

we are push arguments and add to result (eax).

The x86-32 instruction set supports using up to four separate components to specify a
memory operand. The four components are a fixed displacement value, a base register, an
index register, and a scale factor. An effective address is calculated as follows:

effective address = base register + index register * scale factor + displacement

The base register can be any general-purpose register; the index register can be any
general-purpose register except ESP; Displacement values are constant offsets that are
encoded within the instruction; valid scale factors include 1,2,4, and 8. The size of the final
effective address is always 32 bits.
For example:

mov eax, [MyVal] ; displacement

mov eax, [ebx] ; base register

mov eax, [ebx + 12] ; base register + displacement

mov eax, [MyArray + esi * 4] ; displacement + index register * scale factor

mov eax, [ebx + esi] ; base register + index register

mov eax, [ebx + esi + 12] ; base register + index register + displacement

mov eax, [ebx + esi * 4] ; base register + index register * scale factor

mov eax, [ebx + esi * 4 + 20] ; base register + index register * scale factor +
displacement

In our case we push call arguments, in reverse:

mov edx, [ebp + 8]

mov eax, [ebp + 12]

add eax, edx

If your function has 3 arguments, in reverse:

mov edx, [ebp + 8] ; move third arg to edx

add eax, edx ; add to result

mov edx, [ebp + 12] ; move second arg to eax

add eax, edx ; add to result

mov edx, [ebp + 16] ; move first arg

add eax, edx ; add to result

If your function has 4 arguments, add:

22/30

mov edx, [ebp + 20] ; first arg

add eax, edx ; add to result

; ...

etc… I think your got the main idea.

As I wrote earlier, some compilers may subtract the required space from the stack pointer,
something like this:

sub esp, 16 ; 16 bytes (4 arguments * 4 bytes)

mov edx, [ebp + 8]

add eax, edx

mov edx, [ebp + 12]

add eax, edx

mov edx, [ebp + 16]

add eax, edx

mov edx, [ebp + 20]

add eax, edx

add esp, 16 ; remove call arguments from frame (16 bytes)

Continue to examine our debug. And a few more steps:

we are return to function main(void):

23/30

I think now you understand better why we needed to understand stacks. Suppose we have a
function f1 that calls function f2, and function f2, in turn, calls function f3. When the function
f1 is called, it is assigned a certain place on the stack for local data. This space is allocated
by subtracting from the ESP register a value equal to the size of the required memory. The
minimum size of the allocated memory is 4 bytes, i.e. even if the procedure needs 1 byte, it
should take 4 bytes.

The f1 function does some things and then calls the f2 function. The f2 function also makes
space on the stack by subtracting some value from the ESP register. In this case, the local
data of the functions f1 and f2 are located in different memory areas. Next, the function f2
calls the function f3, which also allocates space for itself on the stack. The f3 function does
not call any other functions and at the end of its work it must free up space on the stack by
adding to the ESP register the value that was subtracted when the function was called. If the
function f3 does not restore the value of the ESP register, then the function f2, continuing to
work, will not access its data, since it looks for them based on the value of the ESP register.
Similarly, the function f2 must restore the value of the ESP register upon exiting, which was
before its call.

Thus, at the level of procedures, it is necessary to follow the rules for working with the stack -
the procedure that took up space on the stack last must free it first. If this rule is not followed,
the program will not work correctly. But each procedure can access its own stack area in an
arbitrary way. If we were forced to follow the rules for working with the stack inside each
procedure, we would have to transfer data from the stack to another memory area, and this
would be extremely inconvenient and would extremely slow down the program execution.

24/30

Each program has a data area where global variables are located. Why is local data stored
on the stack? This is done to reduce the amount of memory occupied by the program. If the
program calls several procedures sequentially, then at each moment of time space will be
allocated only for the data of one procedure, since the stack is occupied and released. The
data area exists all the time the program is running. If local data were located in the data
area, it would be necessary to allocate space for local data for all program procedures.

Let’s update our function addMe:

#include <stdlib.h>

int addMe(int a, int b) {

 return 42 * a + b;

}

int main(void) {

 int c;

 c = addMe(3, 5);

 return 0;

}

which is equivalent this x86 assembly code:

25/30

; example2.asm

; author: @cocomelonc

; run:

; nasm -f elf32 -o example3.o example3.asm

; gcc -static -m32 -o example3 example3.o

; 32-bit linux

section .text

 global main

; make new call frame (addMe)

addMe:

 push ebp ; save old call frame

 mov ebp, esp ; initialize new call frame

 mov eax, [ebp + 8] ; move a to eax

 imul edx, eax, 42 ; calculate result

 mov eax, [ebp + 12] ; move second arg to eax

 add eax, edx ; add to result

 pop ebp ; restore call frame

 ret ; return (to main)

; make new call frame (main)

main:

 push ebp ; save old call frame

 mov ebp, esp ; initialize new call frame

 push 3 ; push call arguments in reverse

 push 2 ; push 2

 call addMe ; call function addMe

 mov [ebp + 8], eax ; move result to c

 xor eax, eax ; mov eax, 0

 ; restore old call frame

 ; some compilers may produce a 'leave' instruction instead

 mov esp, ebp

 pop ebp ; restore old call frame

 ret

section .data

let’s go to compile and analyze:

nasm -f elf32 -o example3.o example3.asm

gcc -static -m32 -o example3 example3.o

objdump -D -M intel example3 | grep main.: -A11 | head -n 11

objdump -D -M intel example3 | grep addMe.: -A11 | head -n 10

26/30

As you already understood, the imul instruction is used for multiplication.

win32 programming

Ok. Everything is good. But since most malware written for windows, the malware analyst
often encounters win32 applications when analyzing.
So, let’s go to code win32 example (let’s call it hello3.asm):

27/30

; hello3.asm: pop-up "hello world" to the window by using win32 API.

; author: @cocomelonc

; run:

; nasm -f win32 -o hello3.o hello3.asm

; i686-w64-mingw32-ld -o hello3.exe hello3.o -lkernel32 -luser32

; 32-bit windows

[BITS 32]

section .text

global _start

extern _MessageBoxA@16

extern _ExitProcess@4

_start:

 ; MessageBoxA(HWND hWnd, LPCSTR lpText, LPCSTR lpCaption, UINT uType);

 push dword 0 ; push arguments reverse: 0

 push caption ; push arguments reverse: caption

 push msg ; push arguments reverse: msg

 push dword 0 ; push arguments reverse: hWnd

 call _MessageBoxA@16 ; call MessageBoxA

 ; ExitProcess(0)

 push dword 0 ; push arguments: 0

 call _ExitProcess@4 ; call ExitProcess

section .data:

 msg: db "hello world", 0

 caption: db "hello", 0

This application is simplest, just pop-up message box with hello world. Let’s examine this
code. It uses only plain Win32 system calls from kernel32.dll, so it is very instructive to
study since it does not make use of a C library. Because system calls from kernel32.dll are
used, you need to link with an import library. You also have to specify the starting address
yourself.

Firstly, we have

extern _MessageBoxA@16

extern _ExitProcess@4

This is external Win32 API functions. The number after @ is the number of bytes that the
function pops from the stack before the function returns. This should be the number of PUSH
instructions before the call multiplied by 4. In most cases, this will also be the number of
arguments passed to the function multiplied by 4.

Then we push arguments (reverse order) to MessageBoxA, call it, then push arguments
(also reverse order) to ExitProcess and call it.

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messageboxa
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess

28/30

Let’s go to compile:

nasm -f win32 -o hello3.o hello3.asm

i686-w64-mingw32-ld -o hello3.exe hello3.o -lkernel32 -luser32

and run:

.\hello3.exe

If we go to do some static analysis:

strings -n 6 hello3.exe | head

hexdump -D hello3.exe | head -n 64

29/30

and then:

objdump -D -M intel hello3.exe | head -n 32

Sometimes, in order to understand what a particular function does, you don’t have to
disassemble it, but just look at its inputs and outputs. This way you can save time. But at the
same time you still have to look inside.

I will write about this in the next post and I will try to consider real examples of simple
malware.

30/30

I will write malware in C/C++ like in this, this or this post and then analyze it.

I hope this post was useful for entry level malware analysts or red team members like me,
who want to develop skills in the art of reverse engineering.

Reverse engineering for beginners
CS5138 free course materials
Practical Malware Analysis Book
GDB
pefile
intel 64 and IA-32 arch software developer’s manual
Source code in Github

Thanks for your time and good bye!

PS. All drawings and screenshots are mine

https://cocomelonc.github.io/tutorial/2021/09/04/simple-malware-av-evasion.html
https://cocomelonc.github.io/tutorial/2021/09/15/simple-rev-c-1.html
https://cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html
https://beginners.re/
https://class.malware.re/
https://nostarch.com/malware
https://www.gnu.org/software/gdb/
https://github.com/erocarrera/pefile
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://github.com/cocomelonc/meow/tree/master/2021-10-08-malware-analysis-2

