
1/18

www.welivesecurity.com
/en/eset-research/mind-air-gap-goldenjackal-gooses-government-guardrails/

Mind the (air) gap: GoldenJackal gooses government guardrails

ESET Research

ESET Research analyzed two separate toolsets for breaching air-gapped systems, used by a cyberespionage threat
actor known as GoldenJackal

Matías Porolli

07 Oct 2024
 •
, 40 min. read

ESET researchers discovered a series of attacks on a governmental organization in Europe using tools capable of
targeting air-gapped systems. The campaign, which we attribute to GoldenJackal, a cyberespionage APT group that
targets government and diplomatic entities, took place from May 2022 to March 2024. By analyzing the toolset
deployed by the group, we were able to identify an attack GoldenJackal carried out earlier, in 2019, against a South
Asian embassy in Belarus that, yet again, targeted the embassy’s air-gapped systems with custom tools.

This blogpost introduces previously undocumented tools that we attribute to GoldenJackal based on victimology,
code, and functional similarities between the toolsets.

Key points of the blogpost:

GoldenJackal used a custom toolset to target air-gapped systems at a South Asian embassy in
Belarus since at least August 2019. In this blogpost, we describe these tools publicly for the first
time.
This blogpost also features the first public description of a highly modular toolset GoldenJackal
deployed on various occasions between May 2022 and March 2024 against a national government
organization of a country in the European Union.
These toolsets provide GoldenJackal a wide set of capabilities for compromising and persisting in
targeted networks. Victimized systems are abused to collect interesting information, process the
information, exfiltrate files, and distribute files, configurations and commands to other systems.
The ultimate goal of GoldenJackal seems to be stealing confidential information, especially from
high-profile machines that might not be connected to the internet.

GoldenJackal profile
GoldenJackal is an APT group active since at least 2019. It targets government and diplomatic entities in Europe, the
Middle East, and South Asia. The group is little known and has only been publicly described in 2023 by Kaspersky.
The group’s known toolset includes several implants written in C#: JackalControl, JackalSteal, JackalWorm,
JackalPerInfo, and JackalScreenWatcher – all of them used for espionage.

Overview

https://www.welivesecurity.com/en/eset-research/mind-air-gap-goldenjackal-gooses-government-guardrails/
https://undefined/en/our-experts/matias-porolli/
https://undefined/en/our-experts/matias-porolli/
https://securelist.com/goldenjackal-apt-group/109677/

2/18

In May 2022, we discovered a toolset that we could not attribute to any APT group. But once the attackers used a tool
similar to one of those publicly documented by Kaspersky, we were able to dig deeper and to find a connection
between the publicly documented toolset of GoldenJackal and this new one.

Extrapolating from that, we managed to identify an earlier attack where the publicly documented toolset was
deployed, as well as an older toolset that also has capabilities to target air-gapped systems. This blogpost shines a
light on the technical aspects of the publicly undocumented toolsets, and shares some insights about GoldenJackal’s
tactics, techniques, and procedures.

Victimology

GoldenJackal has been targeting governmental entities in Europe, the Middle East, and South Asia. We detected
GoldenJackal tools at a South Asian embassy in Belarus in August and September 2019, and again in July 2021.

Kaspersky reported a limited number of attacks against government and diplomatic entities in the Middle East and
South Asia, starting in 2020.

More recently, according to ESET telemetry, a national government organization of a country in the European Union
was repeatedly targeted from May 2022 until March 2024.

Attribution

All the campaigns that we describe in this blogpost deployed, at some point, at least one of the tools attributed to the
GoldenJackal APT group by Kaspersky. As was the case in the Kaspersky report, we can’t attribute GoldenJackal’s
activities to any specific nation-state. There is, however, one clue that might point towards the origin of the attacks: in
the GoldenHowl malware, the C&C protocol is referred to as transport_http, which is an expression typically used by
Turla (see our ComRat v4 report) and MoustachedBouncer. This may indicate that the developers of GoldenHowl are
Russian speakers.

Breaching air-gapped systems

In order to minimize the risk of compromise, highly sensitive networks are often air gapped, i.e., isolated from other
networks. Usually, organizations will air gap their most valuable systems, such as voting systems and industrial
control systems running power grids. These are often precisely the networks that are of most interest to attackers.

As we stated in a previous white paper titled Jumping the air gap: 15 years of nation-state effort, compromising an
air-gapped network is much more resource-intensive than breaching an internet-connected system, which means that
frameworks designed to attack air-gapped networks have so far been exclusively developed by APT groups. The
purpose of such attacks is always espionage, perhaps with a side of sabotage.

With the level of sophistication required, it is quite unusual that in five years, GoldenJackal managed to build and
deploy not one, but two separate toolsets designed to compromise air-gapped systems. This speaks to the
resourcefulness of the group. The attacks against a South Asian embassy in Belarus made use of custom tools that
we have only seen in that specific instance. The campaign used three main components: GoldenDealer to deliver
executables to the air-gapped system via USB monitoring; GoldenHowl, a modular backdoor with various
functionalities; and GoldenRobo, a file collector and exfiltrator.

In the latest series of attacks against a government organization in Europe, GoldenJackal moved on from the original
toolset to a new, highly modular one. This modular approach applied not only to the design of the malicious tools (as
was the case with GoldenHowl), but also to their roles: they were used, among other things, to collect and process
interesting information, to distribute files, configurations, and commands to other systems, and to exfiltrate files.

Technical analysis

Initial access

So far, we haven’t been able to trace back to the initial compromise vector in the campaigns seen in our telemetry.
Note that Kaspersky reported in a blogpost that GoldenJackal used trojanized software and malicious documents for
this purpose.

The mysterious toolset from 2019

The earliest attack that we have attributed to GoldenJackal, which targeted a South Asian embassy in Belarus,
occurred in August 2019. The toolset used in this attack is, to the best of our knowledge, publicly undocumented.
We’ve only observed the following custom tools once, and never again:

A malicious component that can deliver executables to air-gapped systems via USB drives. We’ve named this
component GoldenDealer.
A backdoor, which we’ve named GoldenHowl, with various modules for malicious capabilities.
A malicious file collector and exfiltrator, which we’ve named GoldenRobo.

https://securelist.com/goldenjackal-apt-group/109677/#victims
https://securelist.com/goldenjackal-apt-group/109677/
https://web-assets.esetstatic.com/wls/2020/05/ESET_Turla_ComRAT.pdf
https://www.welivesecurity.com/en/eset-research/moustachedbouncer-espionage-against-foreign-diplomats-in-belarus/
https://web-assets.esetstatic.com/wls/2021/12/eset_jumping_the_air_gap_wp.pdf
https://web-assets.esetstatic.com/wls/2012/11/Stuxnet_Under_the_Microscope.pdf
https://securelist.com/goldenjackal-apt-group/109677/

3/18

An overview of the attack is shown in Figure 1. The initial attack vector is unknown, so we assume that GoldenDealer
and an unknown worm component are already present on a compromised PC that has access to the internet.
Whenever a USB drive is inserted, the unknown component copies itself and the GoldenDealer component to the
drive. While we didn’t observe this unknown component, we have seen components with similar purposes – such as
JackalWorm – in other toolsets used in later attacks performed by the group.

Figure 1. Overview of the initial compromise of an air-gapped system

It is probable that this unknown component finds the last modified directory on the USB drive, hides it, and renames
itself with the name of this directory, which is done by JackalWorm. We also believe that the component uses a folder
icon, to entice the user to run it when the USB drive is inserted in an air-gapped system, which again is done by
JackalWorm.

When the drive is again inserted into the internet-connected PC, GoldenDealer takes the information about the air-
gapped PC from the USB drive and sends it to the C&C server. The server replies with one or more executables to be
run on the air-gapped PC. Finally, when the drive is again inserted into the air-gapped PC, GoldenDealer takes the
executables from the drive and runs them. Note that this time no user interaction is needed, because GoldenDealer is
already running.

We have observed GoldenDealer running GoldenHowl on an internet-connected PC. While we didn’t observe
GoldenDealer directly executing GoldenRobo, we observed the latter also running on the connected PC, used to take

https://securelist.com/goldenjackal-apt-group/109677/#jackalworm

4/18

files from the USB drive and exfiltrate them to its C&C server. There must be yet another unknown component that
copies files from the air-gapped PC to the USB drive, but we haven’t observed it yet.

GoldenDealer

This component monitors the insertion of removable drives on both air-gapped and connected PCs, as well as
internet connectivity. Based on the latter, it can download executable files from a C&C server and hide them on
removable drives, or retrieve them from these drives and execute them on systems that have no connectivity.

The program can be run with or without arguments. When run with arguments, it takes a path to a file that it moves to
a new location and then runs via the CreateProcessW API without creating a window.

To prevent hidden files being shown in Windows Explorer, GoldenDealer creates the ShowSuperHidden value in the
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Advanced registry key, and sets it to zero.

In case GoldenDealer is not running as a service, it creates and starts a service called NetDnsActivatorSharing, then
exits. If for any reason the service couldn’t be created, persistence is achieved by creating an entry in a Run registry
key.

Table 1 shows the list of configuration files used by GoldenDealer. These are located in the directory from which the
malware is running: C:\Windows\TAPI in the observed attack. More details about these files is provided in subsequent
sections.

Table 1. Configuration files used by GoldenDealer

Filename Purpose
b8b9-de4d-3b06-
9d44 Store status fields.

fb43-138c-2eb0-
c651 Store executable files sent by the C&C server.

130d-1154-30ce-
be1e Store information about all compromised PCs in the network.

38c4-abb9-74f5-
c4e5

Used as a mutex. If this file is open, it means that an instance of GoldenDealer is
already running.

The contents of configuration files are JSON formatted, and stored XOR encrypted on disk. XOR encryption is
performed one byte at a time, with a single-byte key that is incremented based on a multiplier.

Network connectivity thread

In order to determine whether a PC is connected to the internet, GoldenDealer sends a GET request to
https://1.1.1.1/<user_id> every 15 minutes. If the connection fails, or there’s no reply, the PC is assumed to be offline.
1.1.1.1 maps to Cloudflare’s DNS resolver, and the expected behavior is to receive a Not Found document and a 404
status code. The <user_id> part is not relevant here, but is used for C&C communication. GoldenDealer generates
this user identifier based on:

The current username as found via the GetUserNameW API.
The serial number of the first available logical drive in the system. This does not necessarily mean the drive
where the OS is installed.

These two strings are separately hashed with the FNV-1a function, and the resulting numbers are XORed together,
obtaining a number that identifies the user.

To keep track of network connectivity status, GoldenDealer uses a global variable that can hold any of the following
values:

0 – Malware started running and connectivity has not been checked.
1 – PC doesn’t have internet connectivity.
2 – PC has internet connectivity.

If the status is 2, a thread is signaled to download executable files from the C&C server, and another thread is
signaled to copy the executables to USB drives. A thread to get executables from drives and run them will only be
signaled when the status is 1. Whenever the status changes, the configuration file b8b9-de4d-3b06-9d44 is updated
with the new value. Fields in this file are:

wmk – network connectivity status.
qotwnk – number of seconds without internet. This value is incremented every 15 minutes and reset to zero
when there’s connectivity. It can be used if the malware is configured to wait a minimum number of seconds
before deciding that the PC has no connectivity, but there was no wait in the samples that we observed.
ltwnk – unknown. This field is not used by the malware.
rpk – list with hashes of executables downloaded from the C&C server.

Downloader thread

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

5/18

This thread checks the network connectivity status every 30 minutes, and only performs the following actions if the
PC is connected to the internet. First, a GET request is sent to https://83.24.9[.]124/<user_id>, just to let the C&C
server know that another request is to follow. The reply from the server is not processed. If the request fails, then
another request is sent to a secondary server, http://196.29.32[.]210/<user_id>, probably to notify about failure, as the
thread doesn’t continue to execute in this case. The URLs are hardcoded in the malware and are not configurable in
the samples that we observed.

When communication is successful, GoldenDealer sends a request to https://83.24.9[.]124/<user_id>/fc93-10f4-2a68-
d548. The server replies with an array of JSON objects with the following fields:

ek – a base64-encoded string that is an executable file after being decoded,
tpik – an array of user_ids used to decide whether the executable will be run,
hek – the FNV-1a hash of ek, and
apk – date and time when the executable was obtained from the C&C server.

The contents of the last two fields are not relevant, because they are calculated by the downloader thread, replacing
original data sent by the C&C server. In both cases, they are stored as decimal numbers.

GoldenDealer will run an executable sent by the server if the corresponding user_id is in the tpik list, and the hek
hash is not in the list of hashes stored in the rpk field in the configuration. In other words, connected PCs can
download executables and pass them along to other systems via USB drives, but they can also run received
executables. When an executable is run, its hash is added to the rpk list, ensuring that it will only be executed once
by that victim. Each executable is written in the working directory with the value of <hek> as its filename. All JSON
objects with received executables are stored on disk, in the file fb43-138c-2eb0-c651.

As the final step, the downloader thread collects information about the compromised system and sends it to
https://83.24.9[.]124/<user_id>/a1e7-4228-df20-1600. The configuration file 130d-1154-30ce-be1e is updated to store
this information as well. Figure 2 shows part of the JSON object with the information sent to the C&C server. While all
strings are sent as arrays of decimal character codes, for readability we show them as strings in the image. For
example, instead of lsass.exe, the value [108, 115, 97, 115, 115, 46, 101, 120, 101] is actually sent.

Figure 2. Part of the information sent by the downloader thread to the C&C server

The members are:

iepk – a Boolean value that indicates whether the GoldenDealer process is elevated,
pclk – an array of running processes,
pglk – an array of installed programs in both Program Files and Program Files (x86) directories,
pik – the user_id,

6/18

sik – information about the operating system (including version, build, service pack number; architecture; and
Boolean values indicating whether the OS is running on a server, domain controller, or workstation),
uck – the user who is running the GoldenDealer process, and
ulk – an array of all users, each with a Boolean value indicating whether the user has administrator privileges.

USB monitoring thread on connected PCs

GoldenDealer monitors the insertion of removable drives by creating a window titled defaultWindow with a custom
event handler that processes inserted devices and ignores all other system events.

Once a USB drive has been inserted, this thread patches one byte in the master boot record (MBR) of that drive: it
searches for the offset where the BOOTMGR string resides, and replaces the first O with 0. Then it checks whether
the second O has also been patched to 0, and exits if it hasn’t. The USB thread that runs on air-gapped PCs does the
opposite: it patches the second O, and checks whether the first has already been patched. This means that the USB
drive needs to have been inserted in both a connected PC and an air-gapped PC for the drive to be processed.

If the check is successful, a hidden directory is created on the USB drive, with two files written inside:

37b3-ebe5-568e-0676 – this file has the same contents as fb43-138c-2eb0-c651 (all the executables sent by
the C&C server). It’s used to pass the executables to air-gapped systems, for execution.
bc41-ac6f-e55e-61a8 – a file with information from air-gapped PCs. It’s created empty by this thread, then
populated by the USB thread running on air-gapped PCs. The contents of this file are appended to the local file
130d-1154-30ce-be1e (see Table 1), to be sent to the C&C server by the downloader thread.

USB monitoring thread on air-gapped PCs

This is complementary to the thread described in the previous section: it takes the file 37b3-ebe5-568e-0676 with
executables on the USB drive and copies its contents to the local file fb43-138c-2eb0-c651. It also takes the local file
130d-1154-30ce-be1e with information about the air-gapped system and adds its contents to the bc41-ac6f-e55e-
61a8 file on the USB drive. The code to obtain system information and to run executables is contained in this thread.

GoldenHowl

Another tool from GoldenJackal’s 2019 toolset is GoldenHowl, a backdoor written in Python that consists of various
modules for malicious functionalities. It is distributed as a self-extracting archive that contains legitimate Python
binaries and libraries, as well as malicious scripts. Figure 3 shows the contents of one of these archives. The
attackers renamed the Python executable – in version 2.7.15 – as WinAeroModule.exe. This component is intended
to be run on PCs with internet connectivity, given its functionalities.

7/18

Figure 3. Contents of GoldenHowl’s self-extracting archive

The initial script in GoldenHowl, referred to as core_script in the malware’s configuration file, performs the following
actions:

decrypts and loads the malware’s configuration from a JSON file,
creates directories used by the malware, and
starts a thread for each module.

The malware’s configuration is decrypted using the Fernet algorithm, with the hardcoded key
_ylmUTbqcx6FxMZ5ZvNxDQZYuNh41yxhKcPJLzxgqEY=. Figure 4 shows part of the decrypted configuration.

https://cryptography.io/en/latest/fernet/

8/18

Figure 4. Part of GoldenHowl’s decrypted configuration

Table 2 shows the Python modules that we’ve observed – in the order that they appear in the config – along with a
description of their functionalities. All modules run indefinitely, except for the persistence_schtasks module, which
runs only once.

Table 2. Malicious modules in GoldenHowl

Module name File on disk Description

persistence_schtasks 5991-8d44-
b226⁠-⁠0e6c.py

Creates the scheduled task
Microsoft\Windows\Multimedia\SystemSoundsService2 to persist the
execution of core_script.

files_tree edc5-4055-
37cd-d2d2.py

Generates a listing of files and directories by calling Windows’ tree
command, for a path specified in a request sent by the C&C.

files_stealer 5488-240b-
c00f-203a.py

Exfiltrates a single file to the C&C server. The file path is specified in a
request sent by the C&C.

data_transform
8744-a287-
35be-
4ea0.py

Utility module that takes incoming requests from the C&C server and
decrypts them, and takes responses from other modules that need to be
sent to the C&C and encrypts them. The encryption algorithm is Fernet,
and the key is specific to this module:
QRqXhd_iB_Y3LpT2wTVK6Dao5uOq2m5KMiVkMnJfgw4=

transport_http 63d5-be5f-
e4df-7e65.py

Utility module that uploads and downloads files from the C&C server.
See the C&C communication section for more information. Note that the
word transport is commonly used by Turla and MoustachedBouncer to
refer to a type of C&C protocol. Although this might be shared across
Russian-speaking developers, this is a low confidence element for
attribution.

updater c7b4-0999-
aec4-a0c8.py

Utility module that receives a ZIP archive with updated modules or
configuration from the C&C server, extracts the archive, and runs
core_script in a new process, terminating the current process.

sshcmd 1ee0-7c3a-
3331-4df3.py

Connects to an SSH server specified in a request sent by the C&C. Acts
as a reverse shell, executing commands received from the C&C.

ipscanner a86b-108c-
36c7-6972.py

Generates a listing with active IP addresses in an IP range, based on an
IP mask specified in a request sent by the C&C server. To do so, it first
sends a message to all IP addresses in the range, on port 59173, and
then it runs the command arp -a to obtain the ARP cache tables for all
interfaces.

portscanner 2648-69f9-
6dc0-3476.py

Generates a listing with ports that are accepting connections, based on
an IP address and a list of ports specified in a request sent by the C&C
server.

https://web-assets.esetstatic.com/wls/2020/05/ESET_Turla_ComRAT.pdf
https://www.welivesecurity.com/en/eset-research/moustachedbouncer-espionage-against-foreign-diplomats-in-belarus/

9/18

Module name File on disk Description

sshtunnel
9ea4-fb87-
6d57-
924a.py

Creates an SSH tunnel with an SSH server, to forward messages going
from (and to) a host on a listening port, to a forwarding port on the SSH
server. A request from the C&C server specifies: the address and port of
the SSH server, username and password for the SSH session, the
forwarding port on the SSH server, and the address and port of the
listening host.

eternalbluechecker 4b19-7f72-
8c17-dceb.py

Checks whether a host, specified in a request sent by the C&C server,
is vulnerable to a Windows SMB remote code execution vulnerability.
The code for this module is the same as in mysmb.py and checker.py
from this public repository. There is no code in this module to exploit
vulnerable hosts.

socks_proxy 8b55-3ac9-
5c30-d0c4.py

Acts as a proxy server, forwarding packets from a source address to a
destination address. The port to listen for incoming connections is
specified in a request sent by the C&C server. The code in this module
is very similar to that of pysoxy.

text_writer 0ffc-667e-
dce4-b270.py

Writes a text file to a given path. The path and text for writing are
specified in a request sent by the C&C server.

C&C communication

According to GoldenHowl’s configuration, anything that comes from the C&C server is called a request, and files
going to the C&C server represent a response. It should be noted that despite this naming convention, GoldenHowl is
not a passive implant: it initiates the connections to the C&C server. The transport_http module is responsible for
communication with the C&C server, and for writing requests and responses to specific directories. Table 3 shows
directories used by GoldenHowl.

Table 3. Directories in GoldenHowl’s configuration

Name in configuration Name on disk Description
download_dir a700‑280c‑f067‑5a06 Stores encrypted requests coming from the C&C server.

upload_dir b307‑05ea‑7ac8‑c369 Stores encrypted responses, with files or output of
commands, to be sent to the C&C server.

data_dir cda2‑b818‑3403‑b564

Stores requests sent by the C&C server, which are taken
from download_dir, decrypted, and placed in this directory for
modules to process. Also stores output of executed
commands (responses), which are taken from this directory,
encrypted, and written to upload_dir. These actions are
performed by the data_transform module.

temp_dir 5bc5‑0788‑d469‑2f3a This directory was not used in any observed modules.

Requests and responses have structured filenames:

Request – <client_id><module_id><request_id><request_suffix>
Response – <client_id><module_id><request_id><response_suffix>

The fields client_id, request_suffix, and response_suffix are specified in the configuration and are common to all
modules (see Figure 4 for examples). The field module_id indicates which module needs to process a request or
generate a response, and is defined in the configuration section of each individual module. The field request_id is
generated on the C&C server, and ties together requests with responses.

The transport_http module sends GET requests periodically to the C&C server to check for available requests. The
configuration fields specific to this module are:

server_address – address of the C&C server (we observed 83.24.9[.]124, the same address as GoldenDealer’s
server),
server_port – the port used to communicate with the server (we observed 443),
server_use_ssl – indicates whether HTTP or HTTPS will be used for communication,
base_timeout_sec – the minimum wait time before contacting the C&C server, and
timeout_filename – the filename of a text file with a number between 0 and 3600, to specify a different number
of seconds to wait between communications. This file is not included with GoldenHowl, but it could be placed
by the attackers with the text_writer module.

The address used to contact the C&C server is https://<server_address>:<server_port>/<client_id>/.

GoldenRobo

The last of the observed tools from the 2019 toolset, GoldenRobo, is a simple component written in Go that executes
the Robocopy utility to stage files and send them to its C&C server. It iterates across all drive letters from A to Z,
trying to access each drive. If successful, a Robocopy command is constructed:

robocopy <drive_letter>:\ <malware_folder>\1516-fe89-ad12-8102\<drive_letter>\ *.doc *.docx *.xls *.xlsx *.ppt *.pptx
*.pdf *.rtf *.tif *.jpg *.jpeg *.crt *.key *.p12 *.ovpn *.zip *.rar "" /S /R:0 /MAXAGE:7 /XD <malware_folder>\1516-fe89-
ad12-8102\\ 1516-fe89-ad12-8102\\ "Application Data" "All Users" "Documents and Settings" "Local Settings"

https://github.com/worawit/MS17-010/
https://github.com/MisterDaneel/pysoxy/
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/robocopy

10/18

If we break down the command:

files are copied from drive_letter,
to <malware_folder>\1516-fe89-ad12-8102\<drive_letter>\ (for example: C:\Windows\TAPI\1516-fe89-ad12-
8102\C\),
only if the files have extensions .doc, .docx, .xls, .xlsx, .ppt, .pptx, .pdf, .rtf, .tif, .jpg, .jpeg, .crt, .key, .p12, .ovpn,
.zip, or .rar,
including subdirectories (/S),
not retrying on failed copies (/R:0),
excluding files older than seven days (/MAXAGE:7), and
excluding specified directories (/XD).

Copied files from all drives are archived together in a ZIP file _1423-da77-fe86<month>-<day> in the same directory
where GoldenRobo is running (with <month> and <day> corresponding to the current date).

The archive is sent base64 encoded to https://83.24.9[.]124/8102/. The last part of the URL is 8102, which is the
same as the client_id field in GoldenHowl’s configuration. This URL is hardcoded in GoldenRobo, which tells us that
the attackers compiled this version of GoldenRobo for this victim exclusively.

The known toolset: Previously documented by Kaspersky

A few weeks after deploying the previous toolset, GoldenJackal started to use other malicious tools on the same
compromised computers. In September 2019, we observed the execution of PowerShell scripts to download the
JackalControl backdoor. This backdoor was used to execute other PowerShell scripts, to download and run legitimate
tools such as Plink and PsExec.

In various attacks, between September 2019 and January 2024, we observed the following tools in GoldenJackal’s
arsenal:

JackalControl,
JackalSteal, a file collector and exfiltrator, and
JackalWorm, used to propagate other malicious components via USB drives. We observed it propagating the
JackalControl backdoor.

As these components have already been documented by Kaspersky, we will not describe them in this blogpost.
However, one interesting point to mention is that in early versions of these tools, URLs for C&C servers were
hardcoded in the malware binaries. At some point, GoldenJackal modified JackalControl and JackalSteal to receive
C&C servers as arguments.

The latest toolset: Keeping a foothold in the network

In May 2022, we observed GoldenJackal using a new toolset while targeting a governmental organization in Europe.
Most of these tools are written in Go and provide diverse capabilities, such as collecting files from USB drives,
spreading payloads in the network via USB drives, exfiltrating files, and using some PCs in the network as servers to
deliver diverse files to other systems. In addition, we have seen the attackers using Impacket to move laterally across
the network.

In the observed attacks, GoldenJackal started to use a highly modular approach, using various components to
perform different tasks. Some hosts were abused to exfiltrate files, others were used as local servers to receive and
distribute staged files or configuration files, and others were deemed interesting for file collection, for espionage
purposes. Figure 5 shows a classification of the components that are described over the next sections.

https://securelist.com/goldenjackal-apt-group/109677/#jackalcontrol
https://the.earth.li/~sgtatham/putty/0.58/htmldoc/Chapter7.html
https://learn.microsoft.com/en-us/sysinternals/downloads/psexec
https://securelist.com/goldenjackal-apt-group/109677/
https://github.com/fortra/impacket

11/18

Figure 5. Components in GoldenJackal’s latest toolset

Regarding network infrastructure, we didn’t observe any external IP addresses in any of the analyzed components.
File exfiltrators use publicly available services such as Google Drive or Outlook SMTP servers.

GoldenUsbCopy

GoldenUsbCopy, which we classify as a collection component, monitors the insertion of USB drives, and copies
interesting files to an encrypted container that is stored on disk, to be exfiltrated by other components. According to
strings found in the binary, the main package for the application is named UsbCopy.

Newly inserted drives are detected by creating a window with name WindowsUpdateManager, to receive system
events and process them with a custom handler. If the handler receives a WM_DEVICECHANGE message, with an
event type DBT_DEVICEARRIVAL, and the device type is DBT_DEVTYP_VOLUME, this means a new drive is ready
to be processed. Figure 6 shows a side-by-side comparison between decompiled code in GoldenUsbCopy and
GoldenDealer. Even though each was written in a different programming language, we can see that the code
retrieves the letter of the drive to process in the same manner.

Figure 6. Code comparison between GoldenUsbCopy and GoldenDealer

GoldenUsbCopy determines which files to process from a USB drive based on a configuration that is stored AES
encrypted in CFB mode in the file reports.ini. The 32-byte key to decrypt the configuration is hardcoded in the
malware. After decryption, the configuration contains the following fields, in JSON format:

outputCipherFilename – full path to an encrypted archive that acts as a container for other files, such as files
that contain listings of filenames from newly inserted drives, and files to be exfiltrated,

12/18

RSAKey – a public key to encrypt AES keys that are used to encrypt files to be exfiltrated,
lastDate – files that were last modified more than lastDate days ago are not processed,
registryKey – a key in HKEY_CURRENT_USER that will store SHA-256 hashes of files already processed for
exfiltration,
registryValue – the registry value that stores the list of hashes,
maxZIPSize – the maximum size in bytes for outputCipherFilename (more details below),
maxFileSize – files larger than maxFileSize, in bytes, are not exfiltrated, and
extensionsFile – a list of file extensions for exfiltration (we observed .docx, .pdf, .doc, and .odt).

Once the configuration is decrypted, GoldenUsbCopy waits for a USB drive to be inserted. A listing of all files on the
inserted drive is written to a text file, which is then archived in a ZIP file, encrypted with AES, and added to
outputCipherFilename. Only the encrypted container is written to disk; intermediate steps, involving text files and
archives, are kept in memory.

A similar procedure is done for files on the drive that meet the criteria for exfiltration: these files are archived together
preserving their directory structure, encrypted with AES, and added to outputCipherFilename. When selecting files for
exfiltration, a list with SHA-256 hashes is retrieved from the registry. If the hash of a file is in that list, the file is not
exfiltrated. If the hash isn’t in the list, it is added, so that the file won’t be exfiltrated again.

Whenever adding files to exfiltrate would exceed the maxZIPSize of outputCipherFilename, the excess files are not
added to the archive for exfiltration, but their paths are added to a text file that is archived, encrypted, and added to
outputCipherFilename.

Regarding encryption, each individual archive that is added to the encrypted container is encrypted with AES in CFB
mode, with a key and an initialization vector (IV) that are randomly generated on the spot. Both the key and IV need
to be stored, but only the key is encrypted with RSAKey. Figure 7 shows an example of how these fields are stored in
the encrypted container.

Figure 7. Structure of the encrypted container

GoldenUsbGo

This component is very similar to GoldenUsbCopy and seems to be a later version of it, based on when we observed
them in our telemetry and comparing Go versions used to compile them. However, GoldenUsbGo achieves the same
functionality with a simpler implementation:

There is no configuration file. All criteria for file selection are hardcoded in the malware:
if filename contains a specific word from a list, process the file regardless of all other criteria (the list
contains strings such as pass, login, and key),
else, file size must be no bigger than 20 MB,
the date the file was last modified must be no more than 14 days ago, and
the file extension must be one of .pdf, .doc, .docx, .sh, or .bat.

Insertion of removable drives is not continuously monitored. A hardcoded list of drive letters is checked
periodically to determine if they have an assigned volume of D:, E:, F:, G:, or H:.
The list of hashes of files that were already processed is kept in memory only.
There is no size limit for the encrypted container where files are staged for exfiltration.
Files are not archived but instead are compressed with gzip. Both file contents and filenames are compressed.
Figure 8 shows how compressed data is arranged before encryption.

Figure 8. Fields used for gzip-compressed files, before encryption

The path to the encrypted container is hardcoded in the malware:

C:\Users\[redacted]\appdata\local\SquirrelTemp\SquirrelCache.dat

The hardcoded username in the path, redacted above, along with the short list of drives and specific filenames to
process, tell us that GoldenUsbGo was compiled and tailored for this particular victim.

13/18

Compressed files are encrypted with AES in CFB mode with the hardcoded key Fn$@-fR_*+!13bN5. The structure is
the same as in GoldenUsbCopy (shown in Figure 7) but without the AES key. After compressing the files,
GoldenUsbGo generates a listing of all files on the inserted drive and adds it to the encrypted container, in the same
manner as exfiltrated files. The filename for the listing is formed from the current date and time, replacing : with - (for
example, 15 Jan 24 13-21 PST).

GoldenAce

This component, which we classified as a distribution tool in Figure 5, serves to propagate other malicious
executables and retrieve staged files via USB drives. While it could be used to target air-gapped systems, it’s not
specifically built for that, as opposed to GoldenDealer. It works together with a lightweight version of JackalWorm and
some other unknown component.

GoldenAce periodically checks drives in the list G:, H:, I:, J:, K:, L:, M:, N:, P:, X:, Y:, and Z:, to find one that is
mapped to a volume. Then it checks whether a trash directory exists in the root of that drive. If it doesn’t exist, it is
created as hidden, and a file called update is copied to that directory, from the same location where GoldenAce is
running. The first directory on the drive (in alphabetical order) that is not hidden is set to hidden, and a file called
upgrade is copied to the root of the drive and renamed as <name_of_hidden_directory>.exe.

The file upgrade is actually JackalWorm, an executable that uses a folder icon, and whose purpose is to copy and run
the update file on another system where the USB drive is inserted. Unlike the version of JackalWorm described by
Kaspersky, this one is very limited: it doesn’t have code to monitor drive insertions, and it cannot be configured to
perform various actions. When executed from the root directory of a removable drive, it opens the hidden folder in
Windows Explorer and writes a batch file to execute the payload in update. Contents of this file, update.bat, are
shown in Figure 9.

@echo off

copy "<drive_letter>:\\trash\\update"

"C:\\Users\\%username%\\AppData\\Local\\update.exe"

"C:\\Users\\%username%\\AppData\\Local\\update.exe" "<drive_letter>:\\trash"

:check1

@tasklist | findstr /i /b "update.exe" >nul

@if %errorlevel%==0 goto check1

@del /f /q /a h "C:\\Users\\%username%\\AppData\\Local\\update.exe"

@del /f /q "C:\\Users\\<username>\\AppData\\Local\\update.bat"

Figure 9. Contents of update.bat

We can see that update is run and deleted, along with the batch file, once it’s done running. While we didn’t observe
the contents of the update component, it is likely that it collects files and stages them in the trash directory on the
removable drive, since the path to that directory is passed as an argument to update.

When GoldenAce finds that the directory trash already exists on a drive, instead of copying files to the drive, it copies
files in the trash directory to C:\ProgramData\Microsoft\Windows\DeviceMetadataCache.

HTTP server

We observed Python’s HTTP server, packaged with PyInstaller, being executed via C:\Windows\system32\cmd.exe
/K C:\Windows\msahci.cmd. Unfortunately, we didn’t observe the contents of the msahci.cmd file, so we don’t know
the arguments passed for execution, such as the port for the server to listen on.

GoldenBlacklist

As a processing component, GoldenBlacklist downloads an encrypted archive from a local server, and processes
email messages contained in it, to keep only those of interest. Then it generates a new archive for some other
component to exfiltrate.

The URL to retrieve the initial archive is hardcoded: https://<local_ip_address>/update46.zip. The downloaded file is
saved as res.out, and AES decrypted with the hardcoded key
k9ksbu9Q34HBKJuzHIuGTfHL9xCzMl53vguheOYA8SiNoh6Jqe62F7APtQ9pE, using a legitimate OpenSSL
executable.

The decrypted archive, update46.tar.gz, is extracted in memory, and only those files that match certain criteria are
written to a subdirectory tmp, in the directory where the malware is running. Criteria:

The file does not contain any email on a blocklist of email addresses. This is done to remove email messages
that come from senders that usually are not interesting. While we can’t include the full list here, it’s worth
mentioning that many of the email addresses are related to newsletters and press releases. It’s important to
note that the attackers must have been operating for some time to build a list like this.

https://securelist.com/goldenjackal-apt-group/109677/#jackalworm
https://github.com/python/cpython/blob/3.12/Lib/http/server.py
https://www.openssl.org/

14/18

The file contains the string Content-Type: application. This is to keep email messages that have attachments,
such as PDF files, Microsoft Office files, and archives, to name a few.

Once the files are selected, GoldenBlacklist archives the tmp directory and encrypts it with openssl.exe, using the
same encryption key as the one used to decrypt the initial archive. The resulting file is archive.out. All intermediate
files and folders are then deleted, as well as openssl.exe, libssl-3-x64.dll, and libcrypto-3-x64.dll, all located in the
malware’s directory. This indicates that another component that we didn’t observe copied those legitimate binaries
there in the first place.

GoldenPyBlacklist

GoldenPyBlacklist is a Python implementation of GoldenBlacklist. It was packaged with PyInstaller and the original
name of the script is duplxer_black_list_for_external_use.py. Some differences to the other component are:

the initial archive is written as ress.out,
the key for decryption is the same, except for a different first character,
the decrypted archive is extracted to the C:\Windows\System32\temp directory for processing,
one additional criterion for file selection is added to process only filenames that end in .msg (these are files
created with Microsoft Outlook),
files that do not meet the criteria are deleted,
the final archive is created with the 7-Zip archiver, and
the final encrypted file is named ArcSrvcUI.ter.

GoldenMailer

Classified as an exfiltration component, GoldenMailer exfiltrates files by sending emails with attachments to attacker-
controlled accounts. It was written in Python and packaged with PyInstaller, and the original name of the script is
send_to_hole.py. GoldenMailer connects to legitimate servers – either smtp-mail.outlook.com or smtp.office365.com
– to send email messages, using SMTP on port 587.

The configuration is read from a file, C:\ProgramData\Microsoft\Windows\Caches\cversions.ini, in the same directory
where GoldenMailer is running. The configuration consists of the following five lines:

email address to authenticate to the SMTP server, and to use as both sender and destination address,
password to authenticate to the SMTP server,
path to directory with archives to exfiltrate,
base filename (e.g., press.pdf) used for archives to exfiltrate; these archives use the following naming
convention: <base_filename>.<three_digit_sequence_number>, and
number of files to exfiltrate.

We noticed that this configuration file was copied from another PC in the local network. Given that the configuration
file indicates how many archives are available to be exfiltrated, we assume that these archives must also be copied
over the network, separating the tasks of collection, distribution, and exfiltration. It is likely that the configuration file is
generated by the component in charge of collecting files and creating archives for exfiltration, but we didn’t observe
that component.

Figure 10 shows an example of an email message sent by GoldenMailer. The subject has a typo: it reads Press
realese. The body is very simple and reads: Daily News about Israel-Hamas war. These strings are hardcoded in the
malware’s binary. Only one attachment is sent per email; if there are many archives to exfiltrate, one email is sent for
each.

https://support.microsoft.com/en-us/office/pop-imap-and-smtp-settings-for-outlook-com-d088b986-291d-42b8-9564-9c414e2aa040

15/18

Figure 10. Example of an email message used to exfiltrate files

The configuration files that we observed contained the following email addresses:

mariaalpane@outlook[.]com
katemarien087@outlook[.]com
spanosmitsotakis@outlook[.]com

GoldenDrive

As opposed to GoldenMailer, this component exfiltrates files by uploading them to Google Drive. Necessary
credentials are found in two files, which are hardcoded in the malware: credentials.json, which contains fields such as
client_id and client_secret, and token.json, with fields such as access_token and refresh_token. A reference to
Google Drive’s API and some code snippets in the Go programming language can be found here.

Similar to GoldenMailer, this component can upload only one file at a time. GoldenDrive is executed with an argument
that provides the full path to the file to upload.

Conclusion
In this blogpost, we revealed two new toolsets used by the GoldenJackal APT group to target air-gapped systems of
governmental organizations, including those in Europe. Common functionalities include the use of USB drives to steal
confidential documents.

Managing to deploy two separate toolsets for breaching air-gapped networks in only five years shows that
GoldenJackal is a sophisticated threat actor aware of network segmentation used by its targets.

A comprehensive list of indicators of compromise (IoCs) can be found in our GitHub repository.

For any inquiries about our research published on WeLiveSecurity, please contact us at
threatintel@eset.com.
ESET Research offers private APT intelligence reports and data feeds. For any inquiries about this
service, visit the ESET Threat Intelligence page.

IoCs

Files

SHA-1 Filename Detection Description
DA9562F5268FA61D19648DFF9C6A57FB8AB7B0D7 winaero.exe Win32/Agent.AGKQ GoldenDealer

https://developers.google.com/drive/api/quickstart/go
https://github.com/eset/malware-ioc/tree/master/goldenjackal
https://undefined/mailto:threatintel@eset.com?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=autotagging&utm_content=eset-research&utm_term=en
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=mind-air-gap-goldenjackal-gooses-government-guardrails&sfdccampaignid=7011n0000017htTAAQ

16/18

SHA-1 Filename Detection Description

5F12FFD272AABC0D5D611D18812A196A6EA2FAA9 1102720677

Python/Agent.ANA

Python/HackTool.Agent.W

Python/Riskware.LdapDump.A

Python/Riskware.Impacket.C

GoldenHowl.

6DE7894F1971FDC1DF8C4E4C2EDCC4F4489353B6 OfficeAutoComplete.exe WinGo/Agent.AAO GoldenRobo.
7CB7C3E98CAB2226F48BA956D3BE79C52AB62140 prinntfy.dll WinGo/DataStealer.A GoldenUsbCo
8F722EB29221C6EAEA9A96971D7FB78DAB2AD923 zUpdater.exe WinGo/Spy.Agent.AH GoldenUsbGo
24FBCEC23E8B4B40FEA188132B0E4A90C65E3FFB fc.exe WinGo/DataStealer.C GoldenAce.

A87CEB21EF88350707F278063D7701BDE0F8B6B7 upgrade MSIL/Agent.WPJ JackalWorm –
simpler versio

9CBE8F7079DA75D738302D7DB7E97A92C4DE5B71 fp.exe WinGo/Spy.Agent.CA GoldenBlacklis
9083431A738F031AC6E33F0E9133B3080F641D90 fp.exe Python/TrojanDownloader.Agent.YO GoldenPyBlac
C830EFD843A233C170285B4844C5960BA8381979 cb.exe Python/Agent.ALE GoldenMailer.
F7192914E00DD0CE31DF0911C073F522967C6A97 GoogleUpdate.exe WinGo/Agent.YH GoldenDrive.

B2BAA5898505B32DF7FE0A7209FC0A8673726509 fp.exe Python/Agent.ALF Python HTTP
server.

Network

IP Domain Hosting provider First seen Details

83.24.9[.]124 N/A Orange Polska
Spolka Akcyjna 2019‑08‑09 Primary C&C server used by

GoldenJackal in 2019.

196.29.32[.]210 N/A UTANDE 2019‑08‑09 Secondary C&C server used by
GoldenJackal in 2019.

N/A assistance[.]uz N/A 2019‑09‑25 Compromised website used to
download malware.

N/A thehistore[.]com N/A 2019‑09‑25 Compromised website used as a C&C
server.

N/A xgraphic[.]ro N/A 2019‑09‑25 Compromised website used as a C&C
server.

Email Addresses

mariaalpane@outlook[.]com
katemarien087@outlook[.]com
spanosmitsotakis@outlook[.]com

MITRE ATT&CK techniques

This table was built using version 15 of the MITRE ATT&CK framework.

Tactic ID Name Description

Resource
Development

T1583.003 Acquire Infrastructure:
Virtual Private Server

GoldenJackal probably acquired a VPS server to use
as a secondary C&C server for the GoldenDealer
malware.

T1583.004 Acquire Infrastructure:
Server

GoldenJackal likely acquired a server to use as a
primary C&C server for the GoldenDealer malware.

T1584.006
Compromise
Infrastructure: Web
Services

GoldenJackal has used compromised WordPress sites
for C&C infrastructure, used by the JackalControl and
JackalSteal malware.

T1587.001 Develop Capabilities:
Malware GoldenJackal develops its own custom malware.

T1585.003 Establish Accounts: Cloud
Accounts

GoldenJackal has used Google Drive to store
exfiltrated files and legitimate tools.

T1588.002 Obtain Capabilities: Tool GoldenJackal uses legitimate tools, such as Plink and
PsExec, for post-compromise operations.

Execution

T1059.001 Command and Scripting
Interpreter: PowerShell

GoldenJackal executed PowerShell scripts to
download the JackalControl malware from a
compromised WordPress website.

T1059.003
Command and Scripting
Interpreter: Windows
Command Shell

GoldenAce uses cmd.exe to run a batch script to
execute other malicious components.

T1059.006 Command and Scripting
Interpreter: Python

GoldenHowl contains various malicious modules that
are Python scripts.

T1106 Native API GoldenDealer can copy and run an executable file with
the CreateProcessW API.

T1569.002 System Services: Service
Execution GoldenDealer can run as a service.

T1204.002 User Execution: Malicious
File

JackalWorm uses a folder icon to entice a potential
victim to launch it.

Persistence
T1543.003

Create or Modify System
Process: Windows
Service

GoldenDealer creates the service
NetDnsActivatorSharing to persist on a compromised
system.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v15/techniques/T1583/003
https://attack.mitre.org/versions/v15/techniques/T1583/004
https://attack.mitre.org/versions/v15/techniques/T1584/006
https://attack.mitre.org/versions/v15/techniques/T1587/001
https://attack.mitre.org/versions/v15/techniques/T1585/003
https://attack.mitre.org/versions/v15/techniques/T1588/002
https://attack.mitre.org/versions/v15/techniques/T1059/001
https://attack.mitre.org/versions/v15/techniques/T1059/003
https://attack.mitre.org/versions/v15/techniques/T1059/006
https://attack.mitre.org/versions/v15/techniques/T1106
https://attack.mitre.org/versions/v15/techniques/T1569/002
https://attack.mitre.org/versions/v15/techniques/T1204/002
https://attack.mitre.org/versions/v15/techniques/T1543/003

17/18

Tactic ID Name Description

T1547.001
Boot or Logon Autostart
Execution: Registry Run
Keys / Startup Folder

If GoldenDealer fails to create a service for
persistence, an entry in a Run registry key is created
instead.

T1053.005 Scheduled Task/Job:
Scheduled Task

GoldenHowl creates the scheduled task
Microsoft\Windows\Multimedia\

SystemSoundsService2 for persistence.

Defense
Evasion

T1564.001 Hide Artifacts: Hidden Files
and Directories

GoldenDealer modifies the registry so that hidden files
and directories are not shown in Windows Explorer.
GoldenDealer, GoldenAce, and Jackal worm create
hidden folders on USB drives.

T1070.004 Indicator Removal: File
Deletion

GoldenAce deletes payloads after they are run.
GoldenBlacklist and GoldenPyBlacklist delete
intermediate files after the final archives are
generated.

T1036.005
Masquerading: Match
Legitimate Name or
Location

GoldenUsbCopy uses a legitimate Firefox directory
C:\Users\
<username>\AppData\Roaming\Mozilla\Firefox\ to
stage files.

T1036.008 Masquerading:
Masquerade File Type

JackalWorm uses a folder icon to disguise itself as a
non-executable file.

T1112 Modify Registry GoldenDealer modifies the registry so that hidden files
and directories are not shown in Windows Explorer.

T1027.013
Obfuscated Files or
Information:
Encrypted/Encoded File

GoldenJackal uses various encryption algorithms in its
toolset, such as XOR, Fernet, and AES, to encrypt
configuration files and files to be exfiltrated.

Credential
Access

T1552.001 Unsecured Credentials:
Credentials In Files

GoldenUsbGo looks for files with filenames that are
usually associated with credentials.

T1552.004 Unsecured Credentials:
Private Keys

GoldenUsbGo looks for files that may contain private
keys, such as those with filenames that contain id_rsa.

Discovery

T1087.001 Account Discovery: Local
Account

GoldenDealer collects information about all user
accounts on a compromised system.

T1083 File and Directory
Discovery

GoldenHowl has a module to generate a listing of files
and directories on a compromised system.
GoldenUsbCopy and GoldenUsbGo generate a listing
of files and directories on a USB drive.

T1046 Network Service
Discovery

GoldenHowl can scan a remote system for open ports,
and whether the target is vulnerable to EternalBlue
malware.

T1120 Peripheral Device
Discovery

GoldenDealer and GoldenUsbCopy monitor the
insertion of removable drives. GoldenUsbGo and
GoldenAce check for various drive letters, to detect
attached removable drives.

T1057 Process Discovery GoldenDealer obtains information about running
processes on a compromised system.

T1018 Remote System Discovery GoldenHowl can scan an IP range to discover other
systems.

T1518 Software Discovery GoldenDealer obtains information about installed
programs on a compromised system.

T1082 System Information
Discovery

GoldenDealer obtains various information about the
operating system and user accounts on a
compromised system.

T1016.001
System Network
Configuration Discovery:
Internet Connection
Discovery

GoldenDealer can determine whether a computer is
connected to the internet.

T1135 Network Share Discovery GoldenAce checks a list of drive letters that can
include network shares.

Lateral
Movement

T1210 Exploitation of Remote
Services

GoldenHowl can check for a Windows SMB remote
code execution vulnerability that can then be exploited
for lateral movement.

T1091 Replication Through
Removable Media

GoldenDealer copies executables to and from USB
drives, to target air-gapped systems. GoldenAce
propagates malicious executables via removable
drives.

Collection T1560.002 Archive Collected Data:
Archive via Library

GoldenRobo and GoldenUsbCopy archive files to be
exfiltrated with the ZIP library.

T1119 Automated Collection
GoldenUsbCopy and GoldenUsbGo automatically
stage files for later exfiltration, when a new removable
drive is detected.

T1005 Data from Local System Most tools in GoldenJackal’s toolset collect information
and files from the local system.

T1025 Data from Removable
Media

GoldenUsbCopy and GoldenUsbGo collect interesting
files from removable media.

GoldenAce can retrieve staged files from a specific
directory on a removable drive.

GoldenDealer can retrieve information from
compromised systems from a specific directory on a
removable drive.

T1074.001 Data Staged: Local Data
Staging

Most tools in GoldenJackal’s toolset stage files locally
for other components to process or exfiltrate them.

https://attack.mitre.org/versions/v15/techniques/T1547/001
https://attack.mitre.org/versions/v15/techniques/T1053/005
https://attack.mitre.org/versions/v15/techniques/T1564/001
https://attack.mitre.org/versions/v15/techniques/T1070/004
https://attack.mitre.org/versions/v15/techniques/T1036/005
https://attack.mitre.org/versions/v15/techniques/T1036/008
https://attack.mitre.org/versions/v15/techniques/T1112
https://attack.mitre.org/versions/v15/techniques/T1027/013
https://attack.mitre.org/versions/v15/techniques/T1552/001
https://attack.mitre.org/versions/v15/techniques/T1552/004
https://attack.mitre.org/versions/v15/techniques/T1087/001
https://attack.mitre.org/versions/v15/techniques/T1083
https://attack.mitre.org/versions/v15/techniques/T1046
https://attack.mitre.org/versions/v15/techniques/T1120
https://attack.mitre.org/versions/v15/techniques/T1057
https://attack.mitre.org/versions/v15/techniques/T1018
https://attack.mitre.org/versions/v15/techniques/T1518
https://attack.mitre.org/versions/v15/techniques/T1082
https://attack.mitre.org/versions/v15/techniques/T1016/001
https://attack.mitre.org/versions/v15/techniques/T1135
https://attack.mitre.org/versions/v15/techniques/T1210
https://attack.mitre.org/versions/v15/techniques/T1091
https://attack.mitre.org/versions/v15/techniques/T1560/002
https://attack.mitre.org/versions/v15/techniques/T1119
https://attack.mitre.org/versions/v15/techniques/T1005
https://attack.mitre.org/versions/v15/techniques/T1025
https://attack.mitre.org/versions/v15/techniques/T1074/001

18/18

Tactic ID Name Description

T1114.001 Email Collection: Local
Email Collection

GoldenBlacklist and GoldenPyBlacklist process email
files that were collected by an unknown component in
GoldenJackal’s toolset.

Command
and Control

T1071.001 Application Layer Protocol:
Web Protocols

GoldenDealer and GoldenHowl use HTTPS for
communication.

T1092 Communication Through
Removable Media

GoldenDealer uses removable media to pass
executables to air-gapped systems, and information
from those systems back to connected systems.

T1132.001 Data Encoding: Standard
Encoding

Executable files sent from the C&C server to
GoldenDealer are base64 encoded.

T1572 Protocol Tunneling GoldenHowl can forward messages through an SSH
tunnel.

T1090.001 Proxy: Internal Proxy GoldenHowl can act as a proxy, forwarding packets.

Exfiltration

T1041 Exfiltration Over C2
Channel

GoldenHowl exfiltrates files via the same channel used
as its C&C.

T1052.001
Exfiltration Over Physical
Medium: Exfiltration over
USB

GoldenJackal’s toolset provides capabilities to copy
files from air-gapped systems and move them to
connected systems via USB drives, for exfiltration.

T1567.002
Exfiltration Over Web
Service: Exfiltration to
Cloud Storage

GoldenDrive exfiltrates files to an attacker-controlled
Google Drive account.

T1048.002

Exfiltration Over
Alternative Protocol:
Exfiltration Over
Asymmetric Encrypted
Non-C2 Protocol

GoldenMailer exfiltrates files via SMTP, using
STARTTLS on port 587.

https://attack.mitre.org/versions/v15/techniques/T1114/001
https://attack.mitre.org/versions/v15/techniques/T1071/001
https://attack.mitre.org/versions/v15/techniques/T1092
https://attack.mitre.org/versions/v15/techniques/T1132/001
https://attack.mitre.org/versions/v15/techniques/T1572
https://attack.mitre.org/versions/v15/techniques/T1090/001
https://attack.mitre.org/versions/v15/techniques/T1041
https://attack.mitre.org/versions/v15/techniques/T1052/001
https://attack.mitre.org/versions/v15/techniques/T1567/002
https://attack.mitre.org/versions/v15/techniques/T1048/002

