
1/12

blog-en.itochuci.co.jp /entry/2024/05/23/090000

Malware Transmutation! - Unveiling the Hidden Traces of
BloodAlchemy
ici-blog ⋮ ⋮ Invalid Date

This post is also available in: 日本語
 

Introduction

This article examines the analysis of a malware called "BloodAlchemy" that we observed in an attack campaign. 
 

In October 2023, BloodAlchemy was named by Elastic Security Lab 1 as a new RAT (Remote Access Trojan).
However, our investigation has revealed that BloodAlchemy is not an entirely new malware but an evolved version of
Deed RAT, the successor to ShadowPad. 

 

Malware group History

Let's look at ShadowPad first. ShadowPad is a particularly notorious malware family used in APT (Advanced
Persistent Threat) campaigns. It was first reported in a software supply chain attack in July 2017. At that time,
ShadowPad was embedded in one of the code libraries of a server management software for enterprise networks

provided by NetSarang 2. 
 In the early stages of 2019, it was believed that only APT41 was using ShadowPad. However, since 2020, many

security researchers reported that it may have been utilized by various APT groups 3.

Moving on to Deed RAT, it is believed to have been used as a RAT by the threat group called Space Pirates, active
since at least 2017, based on its implementation. Additionally, Positive Technologies’ security team suggests that

Deed RAT shows a high degree of code similarity with ShadowPad4.

Now, let's delve into BloodAlchemy, the malware in question. According to Elastic Security Lab’s analysis, this
malware exhibits several characteristics, such as using legitimate binaries to load malicious DLLs, multiple run
modes, persistence mechanisms, and importing specific functions of various communication protocols when
communicating with its command and control (C2) server. These traits indicate that BloodAlchemy is a new variant of
Deed RAT that is still being actively developed by attackers.

The public information of ShadowPad, Deed RAT, and BloodAlchemy is as follows:

Figure 1. Public information on ShadowPad, Deed RAT, and BloodAlchemy

References of Figure 1

[1] ShadowPad in corporate networks

[2] Operation ShadowHammer: a high-profile supply chain attack

[3] Cyber Espionage Tradecraft in the Real World Adversaries targeting Japan in the second half of 2019

[4] Space Pirates: analyzing the tools and connections of a new hacker group

[5] ShadowPad: the Masterpiece of Privately Sold Malware in Chinese Espionage

[6] Operation StealthyTrident: corporate software under attack

[7] APT Threat Landscape in Japan 2020

https://blog-en.itochuci.co.jp/entry/2024/05/23/090000
https://blog.itochuci.co.jp/entry/2024/05/23/090000
https://securelist.com/shadowpad-in-corporate-networks/81432/
https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/
https://www.macnica.co.jp/business/security/manufacturers/files/mpressioncss_ta_report_2019_4_en.pdf
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/space-pirates-tools-and-connections/
https://conference.hitb.org/hitbsecconf2021sin/materials/D1T1%20-%20%20ShadowPad%20-%20A%20Masterpiece%20of%20Privately%20Sold%20Malware%20in%20Chinese%20Espionage%20-%20Yi-Jhen%20Hsieh%20&%20Joey%20Chen.pdf
https://www.welivesecurity.com/2020/12/10/luckymouse-ta428-compromise-able-desktop/
https://www.macnica.co.jp/business/security/manufacturers/files/mpressioncss_ta_report_2020_5_en.pdf


2/12

[8] RedHotel: A Prolific, Chinese State-Sponsored Group Operating at a Global Scale

[9] Chinese State-Sponsored Activity Group TAG-22 Targets Nepal, the Philippines, and Taiwan Using
Winnti and Other Tooling

[10] Attacks on industrial control systems using ShadowPad

[11] Redfly: Espionage Actors Continue to Target Critical Infrastructure

[12] Space Pirates: a look into the group's unconventional techniques, new attack vectors, and tools

[13] Introducing the ref5961 intrusion set

Analysis of BloodAlchemy

Initial infection vector and infection flow

In this case, we analyzed that the attacker used a file set to infect targets with BloodAlchemy by taking over a vender-
use-only maintenance account on a VPN device. Figure 2 shows the infection flow.

Figure 2. The infection flow of BloodAlchemy

The malicious file set consisted of three files: BrDifxapi.exe, BrLogAPI.dll, and DIFX. These files were stored
under the directory C:\windows\. Additionally, a scheduled task
(C:\Windows\System32\Tasks\Dell\BrDifxapi) was created for persistence.

Figure 3. Discovered malicious file set.

Analysis of malicious DLL

When BrDifxapi.exe is executed on the infected host, it leverages the DLL side-loading technique to load a
malicious DLL file called BrLogAPI.dll in the same directory. Subsequently, this malicious DLL loads the DIFX file
and decrypts shellcode from it, executing the shellcode in memory. The crypto algorithm is AES128 (CBC mode), and
the key is the first 16 bytes of the DIFX file.

https://go.recordedfuture.com/hubfs/reports/cta-2023-0808.pdf
https://www.recordedfuture.com/blog/chinese-group-tag-22-targets-nepal-philippines-taiwan
https://ics-cert.kaspersky.com/publications/reports/2022/06/27/attacks-on-industrial-control-systems-using-shadowpad/
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/critical-infrastructure-attacks
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/space-pirates-a-look-into-the-group-s-unconventional-techniques-new-attack-vectors-and-tools/
https://www.elastic.co/security-labs/introducing-the-ref5961-intrusion-set


3/12

Figure 4. The decryption process of shellcode in BrLogAPI.dll

Figure 5. The DIFX data (before) and the decrypted shellcode (after)

Analysis of shellcode

The decrypted shellcode contains an encrypted and compressed form of BloodAlchemy. This custom decryption
process based on the FNV-1a hash algorithm and the lznt1 compression.



4/12

Figure 6. The custom crypto method using FNV-1a hash.

What is FNV-1a hash algorithm?

Fowler-Noll-Vo (FNV) is a hash algorithm based on an idea originally submitted as reviewer comments to
the IEEE POSIX P1003.2 committee by Glenn Fowler and Phong Vo in 1991. It was later improved by
Noll. > FNV is an abbreviation that combines the names of its creators. FNV is widely used for various
purposes, including DNS servers, X (formerly Twitter) services, database index hashing, major web
search/index engines, Message-ID search functionality in netnews history files, and > spam filtering,
among others.

The FNV Non-Cryptographic Hash Algorithm

Figure 7. Decompression process using the lznt1.

What is LZNT1 compression algorithm

The compression algorithm that can be easily used by calling the Windows API named
RtlDecompressBuffer.

LZNT1 Algorithm Details | Microsoft Learn

It has been discovered that the restored BloodAlchemy payload has a unique data format that closely resembles the
PE format but is different. Below are the data structures of the custom format.

offset Descriptions Data
0x00 magic number 45 AB 45 AB
0x04 plugin id 0x10

https://datatracker.ietf.org/doc/html/draft-eastlake-fnv-17
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-xca/5655f4a3-6ba4-489b-959f-e1f407c52f15?redirectedfrom=MSDN


5/12

offset Descriptions Data
0x08 entry point 0x698c
0x0c original base 0x400000
0x10 absolute offset 0
0x14 size of virtualalloc 0x17000
0x18 size of raw data 0x16fab
0x1c size of unknown 0x163bc
0x20 base of code? 0x1000
0x24 section1: virtual address 0x0
0x28 section1: raw data address 0x50
0x2c section1: size of raw data 0x10fa0
0x30 section2: virtual address 0x11000
0x34 etc..

Once the BloodAlchemy payload is restored, the previous mentioned shellcode interprets this custom format for
deploying the final payload into memory and executes it as the fireless malware (Figure 8).

Figure 8. The code that interprets the custom format to deploy the BloodAlchemy.

Analysis of payload (BloodAlchemy)

Structures

BloodAlchemy has several features that are not commonly found in other malware. One of these features is the 'run
mode' value. When transferring the processing from the shellcode mentioned earlier to the entry point of the payload,
it is called with six specified arguments. 

 The first argument set the value of run mode, and the BloodAlchemy's behavior varies significantly based on this
value. The following table summarizes the values for each run mode and their corresponding behaviors:

run
mode Behavior corresponding to each run mode

0 Communication with C2 and backdoor functionality, creation of specified process for code injection,
code injection into specified processes, anti-debugging, anti-sandbox techniques, Persistence

1 Communication with C2 and backdoor functionality
2 Creation of thread for Communication with C2 and backdoor functionality

3 Communication with C2 and backdoor functionality, code injection into specified processes, anti-
debugging, anti-sandbox techniques, Persistence

4 Creation of specified process for code injection
5 Creation of named pipes
6 Installation of malware

It has been confirmed that BloodAlchemy exhibits the ability to load a malware configuration. This configuration is
embedded in an encrypted state within the previous shellcode and, it is decrypted and utilized during BloodAlchemy’s
execution (Figure 9). 

 Furthermore, if a file with a 15-character filename consisting of [a-zA-Z] exists within the directory



6/12

C:\ProgramData\Store, it will be loaded as the malware configuration. The same decryption algorithm used in the
previously mentioned payload was utilized for this decryption process.

Figure 9. The decryption and loading code of the malware configuration.

The malware configuration contains important data related to malicious code processing. This data includes values to
manipulate the behavior set in the run mode, the URL of the C2 server, process names specified for code injection,
and more. Some important data such as a MUTEX value, C2 server, target process name etc., are primarily
encrypted. Additionally, it also includes offset values indicating the positions of these encrypted data like ShadowPad.

Figure 10. The encrypted data and the offset values indicating their positions in the configuration.

Each of these encrypted data is stored in the following order: the size of the encrypted data, a byte key, and the
encrypted data itself.

offset descriptions data
0x00 size of data 0x25
0x01 a byte key 0x41
0x02 encrypted data 1E 9D 09 19 7A D0 9D 9D …

The decryption is performed using another custom algorithm with the stored key. We created a simple Python script
to decrypt the encrypted data.

Python script

As an example, the resolved offsets and decrypted data for each value in malware configuration using the Python
script is as follows:



7/12

Figure 11. Example of resolving offsets and decrypted data.

Not only malware configuration, but the same encryption is also used for other embedded data, such as important
data related to some specific file paths. This Python script can also decrypt these data as well.

Figure 12. Example of decrypting data other than the malware configuration.

Functions

As mentioned above, BloodAlchemy behaves differently depending on the run mode and the values in the malware
configuration. From this characteristic, we believe the BloodAlchemy is a rather unique sample. The main function of
BloodAlchemy is communication with a C2 server and controlling the infected host through the implemented
backdoor commands.

The individual functionalities implemented in BloodAlchemy are introduced here.

Persistence

The payload incorporates a persistence capability. If the run_mode is 0 or 3 and the execution file path is not for
persistence, and if the persistence_flag (a value of 0x34 in the malware configuration) is not 0, the persistence
method will be chosen based on the value of the persistence_flag from 1 to 4.

1: service + startup + taskschd (COM obj) 
 2: service 

 3: startup 
 4: taskschd (COM obj) 

 



8/12

Figure 13. The calling a function of persistence depending on the persistence_flag.

The persistence mechanism is designed for the malware set consisting of test.exe, BrLogAPI.dll, and DIFX to be
created within one of the corresponding directories based on the infected environment.

%AUTOPATH%\Test\
%LocalAppData%\Programs\Test\
%ProgramFiles%\Test\
%ProgramFiles(x86)%\Test\

Anti Sandbox

The payload also has anti-sandbox capabilities to evade analysis in sandbox environments. This feature only
functions when the run_mode is 0, the executable file path is not for persistence, and the value of 0x1c in the
configuration is 1. It checks the process_name, files, and DNS results. It is speculated that the purpose of this feature
is to avoid detection from Trellix sandbox functionality, based on the checked process names.

Figure 14. The anti-sandbox capabilities are enabled by the value of configuration.



9/12

Process Injection

The process injection feature was implemented with following conditions which were the run_mode is 0 or 3 and the
value of 0x54 in the configuration is 1, it attempts to inject the previous shellcode into the following processes
specified in the configuration from 0x58 to 0x64.

%windir%\system32\SearchIndexer.exe
%windir%\system32\wininit.exe
%windir%\system32\taskhost.exe
%windir%\system32\svchost.exe

In order to set the injected shellcode as a queue for asynchronous procedure calls (APC), the QueueUserAPC()
function is used. This technique is known as Early Bird Injection.

What is Asynchronous Procedure Call (APC)

A function that is executed asynchronously in the context of a specific thread. Each thread has its own
APC queue, and an application can register an APC in the queue by calling the QueueUserAPC()
function. This > will result in the execution of the APC function and the occurrence of a software interrupt
during the next scheduled thread."

Asynchronous Procedure Calls | Microsoft Learn

Figure 15. The process injection using QueueUserAPC() function.

As related feature of the payload, if the run_mode is 0 or 4 and the value of 0x68 in the configuration is 1, it creates
the following processes specified from 0x6c to 0x74 and attempts to inject the shellcode into those processes using
QueueUserAPC() too.

%windir%\system32\wininit.exe
%windir%\system32\taskeng.exe
%windir%\system32\taskhost.exe
%windir%\system32\svchost.exe

Creation of VFT associated with each communication protocol

The BloodAlchemy was designed for up to 10 C2 destinations. However, interestingly, in the samples we observed,
only one C2 information was in there. Based on the C2 information, the communication protocol is extracted, and the
Protocol ID to be used within the malware is set. Based on this Protocol ID, the functions necessary for
communication are imported, and a Virtual Function Tables (VFT) is created..

What is Virtual Function Tables (VFT)

A table that stores pointers to virtual functions within a class. If a class has one or more virtual functions,
the compiler creates a virtual function table for that class. Each instance of the class holds pointers to this
> table.

Virtual Function Tables | Microsoft Learn

https://learn.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls
https://learn.microsoft.com/en-us/windows/win32/multimedia/virtual-function-tables


10/12

Figure 16. A VFT is created in the malware to handle the corresponding protocol based on the Protocol ID.

Backdoor commands

15 backdoor commands were implemented to control victim machine. The operations performed by each command
ID are as follows:

command id descriptions
0x1101 update config
0x1102 get current config
0x1201 update test.exe
0x1202 update BrLogAPI.dll
0x1203 update DIFX
0x1204 uninstall and terminated
0x1205 launch persistence_dir\test.exe
0x1301 unknown
0x1302 load received payload and store it into registry value
0x1303 delete registry value
0x1304 unknown
0x1401 get proxy info
0x1402 update proxy info
0x1501 gather victim info
0x1502 echo 0x1502



11/12

Figure 17. Branching of processing based on the backdoor command ID

The code similarities with Deed RAT

Based on our reversing results, we have discovered multiple similarities between BloodAlchemy and Deed RAT. Here
are some examples of code similarities that we consider particularly significant:

The first remarkably similar point is the unique data structures of the payload header in both BloodAlchemy and Deed
RAT. Although there are differences in values such as magic number and plugin ID and other values. This data
structure is designed based on the PE header which maps the payload into memory based on its respective values.

Figure 18. Comparison of custom data structures between Deed RAT and BloodAlchemy

In relation to above example, some similarities have been found in the loading process of shellcode, and the DLL file
used to read the shellcode as well. Regarding the payload, various similarities have been confirmed with high
confidence:

Exception handling after the entry point
Loading start functions for each plugin
Plugin names
Plugin information
Structure of the malware configuration (offset of encrypted data)
Hardcoded directories and a specific file name used for persistence



12/12

Figure 19. Comparison of exception handling after the entry point.

We have concluded that BloodAlchemy is highly likely to be a variant of Deed RAT, based on our deeply analysis and
comparison results.

Summary

In this article, we have explained the analysis results of BloodAlchemy. The origin of BloodAlchemy and Deed RAT is
ShadowPad and given the history of ShadowPad being utilized in numerous APT campaigns, it is crucial to pay
special attention to the usage trend of this malware. 

 
One more thing, our experts presented a talk titled "Into the Vapor to Tracking Down Unknown Panda's Claw Marks"
at the Botconf 2024 held in Nice, France, discussing the analysis of BloodAlchemy.

The slide of presentation is available here, if you interested in the BloodAlchemy research, please check it.

[Slide] Into the Vapor to Tracking Down Unknown Panda’s Claw Marks

Appendix

1. [1]: Disclosing the BLOODALCHEMY backdoor
 https://www.elastic.co/security-labs/disclosing-the-bloodalchemy-backdoor↩

2. [2]: ShadowPad in corporate networks
 https://securelist.com/ShadowPad-in-corporate-networks/81432/↩

3. [3]: ShadowPad
 https://attack.mitre.org/software/S0596/↩

4. [4]: Space Pirates: a look into the group's unconventional techniques, new attack vectors, and tools
 https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/space-pirates-a-look-into-the-group-s-

unconventional-techniques-new-attack-vectors-and-tools/↩

https://www.botconf.eu/wp-content/uploads/formidable/2/BOTCONF2024-NiwaIshimaruSato-IntotheVapor_ICI.pdf
https://www.elastic.co/security-labs/disclosing-the-bloodalchemy-backdoor
https://securelist.com/ShadowPad-in-corporate-networks/81432/
https://attack.mitre.org/software/S0596/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/space-pirates-a-look-into-the-group-s-unconventional-techniques-new-attack-vectors-and-tools/

