WWW. ptsecurity. COM /ww-en/analytics/pt-esc-threat-intelligence/hellhounds-operation-lahat-part-2/

Hellhounds: Operation Lahat. Part 2

Positive Technologies : : 5/22/2024

Introduction

In November 2023, the team at the Positive Technologies Expert Security Center (PT ESC) released their first
research report on attacks by the hitherto-unknown group Hellhounds on Russian companies' infrastructure:
Operation Lahat. The report focused on the group's attacks on Linux hosts that relied on a new backdoor known
as Decoy Dog. Hellhounds carried on attacks on organizations located in Russia, scoring at least 48 confirmed
victims by Q2 2024.

As the PT ESC CSIRT team responded to an incident at a transportation company, they detected previously
unreported attacks on Windows-based infrastructure, besides already-known TTPs (Tactics, Techniques, and
Procedures) and attacks on Linux hosts. The new investigation also found that Hellhounds had been successfully
hitting Russian companies since at least 2021. It is a known fact that development of the malware began at least
as early as 2019.

The Hellhounds group compromises organizations they select and gain a foothold on their networks, remaining
undetected for years. In doing so, the group leverages primary compromise vectors, from vulnerable web services

to trusted relationships. The malicious actor presumably penetrated the infrastructures by using supply chain attacks.

It would often disguise its tools as legitimate software processes including Positive Technologies products.

The report describes previously unknown parts of the group's toolkit, their obfuscation methods, and lists indicators
of compromise and malware sample detection signatures.

An extended version of the research report was first presented at the international information security cyberfestival
Positive Hack Days 2.

First Stage (Decoy Dog Loader for Windows)

After successfully compromising a Linux infrastructure, an event we described in detail last year, the malicious actor
made a successful attempt to compromise mission-critical hosts running Windows. Having gained access to the
system, the attackers installed a service named "Microsoft Account Service" or "Microsoft Viewer Service", which ran
the PE executable AccSrvX64__STABLE__ 2016-11-10.exe or R_TARIF.VIEWS_X86.EXE. Below is an example

of the services.

{

"Name": "Microsoft Account Service",

"Caption": "Microsoft Account Service",

"Description™: "",

"DisplayName": "Microsoft Account Service",

"PathName": "C:\\ [REDACTED]\\accounts64\\AccSrvX64 STABLE 2016-11-10.exe",
"ProcessId": 5092,

"Started": true,

"State": "Running",

"SystemName": " [REDACTED]",

"TimeLine": "2024-01-02T21:14:53.132165z2",
"ModuleName": "Win32 Service"

}

{

"Name": "Microsoft Viewer Service",
"Caption": "Microsoft Viewer Service",
"Description™: "",

"DisplayName": "Microsoft Viewer Service",
"PathName": "C:\\[REDACTED] \\R_TARIF.VIEWS_X86.EXE",

"ProcessId": 5548,
"Started": true,

"State": "Running",

1/13


https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/hellhounds-operation-lahat-part-2/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/hellhounds-operation-lahat/?utm_source=pt&utm_medium=article&utm_campaign=hellhounds-operation-lahat-part-2&utm_content=esc
https://www.ptsecurity.com/ww-en/services/forensic/?utm_source=pt&utm_medium=article&utm_campaign=hellhounds-operation-lahat-part-2&utm_content=esc
https://phdays.com/en/forum/program/?tags=defense&talk-id=833
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/hellhounds-operation-lahat/?utm_source=pt&utm_medium=article&utm_campaign=hellhounds-operation-lahat-part-2&utm_content=esc

"SystemName": " [REDACTED]",
"TimeLine": "2024-01-03T22:04:30.55860582",
"ModuleName": "Win32_ Service"

}

Interestingly, the malicious actor's activity in the compromised organization's Windows-based infrastructure began
amid the New Year's holiday season on January 2 and 3.

The executable file size is 17 KB. After the service is started successfully, the sample decrypts a list of domains
inside the .rdata section and then attempts to resolve the resulting domain names.

Each encrypted domain begins with an FF byte. Encryption uses a simple algorithm based on two operations: xor and
subtract. Decryption involves the number of the character in the row and the row number; row character numbers
start at zero.

Figure 1. Encryption algorithm

The domains have the following format:

[-1['][0!][...]<domain>

The "-" option means the domain does not have to be resolved. If it could not be resolved, the loader moves on to the
next domain on the list. The "I" option is only used together with the "-" to show the number of resolve attempts that
were made before the domain was skipped. The number of resolve attempts is calculated as 2”n, where n is the
number of consecutive "I" options. If the option is missing, only one resolve attempt is made.

Domains in the configuration are used when obtaining a part of the key for payload decryption. They also can
be used for generating legitimate-looking traffic and getting around sandboxes.

A superficial dynamic analysis may suggest that domains used at this stage are C2 servers. However, a detailed
analysis shows that both domains and subsequently obtained IP addresses are used for key generation only and
possibly, for disguising as legitimate utilities. Besides, the malware is notable for its ability to use non-existent
subdomains located in valid domains, such as mp0.ptsecurity.com. While this may create a semblance of legitimacy,
the domain is certain not to be resolved.

A domain with a "-" option is used for generating traffic but not a key. A domain like that must not be resolved,

or alternatively, it is resolved after the right domain. One of the domains must be resolved and have a static IP
address—this is what will be used for generating a key. The malicious actor notably used this feature as a kill switch
to shut down the malware in a target system.

After all domains in the configuration are decrypted and resolved, the loader proceeds to decrypting the next block.

2/13



;Ekna x| 3gc*e®
Ieoll}aepLe Wy}l
ASH3 VB3 v +-10)
70" kllrenpkian }q:
qublr&r6 el reg :

»PKp] NPT« A
1| -T4H; ETYeBKd Tl
QitP{D&1 &t (20v
oKamwk70e 1 { T 4
264 T&PoT—0Y] om
B3% jLfzn_q[ 'EAd
3dnumbaks, °CYa~y
b MionAs] (sEPasxi
Yf° LTQPF»ﬂ E°n1
Ly |y me[Lan
afb-W-1Ll-x315, kA

Figure 2. Block in the .rdata section

The block has a fixed size of 256 bytes, and it is encrypted with the CLEFIA algorithm in CBC mode. It contains the
path to the main backdoor. The key is generated as follows: the name of the executable file minus the final zero

is uppercased, and the byte-coded IP address is appended to it. The resulting byte string is hashed with SHA-3

to produce a 256 byte output. The first 16 bytes are used as the key, and bytes 5 through 20, as the initialization
vector. Example of key generation.

Encrypted BLOB
(256 byte)
XOR-SUB
algorithm

- I
Decoy Dog (First Stage) -act0.microsoft.com
PE File dns.msftncsi.com M

1P-address

oS
131.107.255.255

1P-address (HEX)

Filename

AccSrvX64__STABLE__2016-11-10.exe

836bffff

ACCSRVX64__STABLE__2016-11-10.EXE\x83k\xff\xff

SHA3-256

]76f6c839_91681cf5c0a9425b325523cbe8564b77 ‘
Payload path

[0:16] ~ key. l
1 o [ C:\[REDACTED]\accounts64
| 76f6c83926f4ca63f3b9off2c76904477 | y CLEFIA CBC [ \NPipex64_32.dll

(5:20]- IV l w

| 26f4ca633b9ff2c7690447791681cf5 |

Figure 3. Second Stage (Decoy Dog for Windows) path decryption algorithm

After decrypting the path to the backdoor, the loader reads and decrypts it in the same manner, by using the same
key and initialization vector, and then passes control to its entry point. Interestingly, unlike the Linux sample, the
Windows malware does not check the integrity of decrypted data.

The backdoor has the MZ signature replaced with HE, and the PE signature, overwritten as a random 4-byte
sequence.

3/13


https://ru.wikipedia.org/wiki/CLEFIA

120: SE
Figure 4. Fragment of Decoy Dog

The malicious actor invested a lot of effort in disguising its activity on the hosts that it compromised. To do this, they

imitated MaxPatrol SIEM and Microsoft services.

= MaxPatrol SIEM Agent.exe Properties ¢ PR_TARIF VIEWS_X86.EXE Properties *
General Compatibility Security Details Previous Versions General Compatibility Security Details Previous Versions

Property Value Property Value

Description Description

File description  MaxPatrol SIEM Components File description Microsoft Viewer Service

Type Application Type Application

File version 11.3.0.376 File version 31.337

Product version 11.3.0.376 Product version 3.1.3.37

Copyright Copyright (C) 2018 Positive Technologies Copyright Copyright (C) 2018 Microsoft, All Rights R...

Size ) 77.5KB Size 16.5 KB

Dete madified  4/6/2024 3:39 PM Date modified  1/3/2024 7:01 PM

Language English (United Kingdom) )

Language English (United Kingdom)

Original filename MaxPatrol SIEM Agent.exe . .
Qriginal filename Microsoft Viewer Service.exe

Remove Properies and Personal Information Remove Properies and Personal Information

Figure 5. Information about the Decoy Dog Loader files for Windows

Tellingly, the Linux samples were virtually unusable unless they passed a machine-id check, that is, the malware
could not be run without a valid identifier. The Windows samples do not contain a check like that, although they

do check the executable name, which never matches the original filename in the metadata, a weaker check. If the IP

address changes, the researchers can use PDNS (Passive DNS) services.

Second Stage (Decoy Dog for Windows)

The decrypted payload is all but identical to the Decoy Dog version for Linux examined earlier. The backdoor
is based on the open-source project Pupy RAT.

All of the samples we managed to discover used the C2 server net-sensors|.Jnet and the DGA domain dynamic-
dns[.]Jnet. Neither of the samples had a dynamic configuration.

Configuration example:

{'debug': False, 'launcher': 'dnscnc', 'launcher args': ['--domain', 'net-
sensors.net', '-E', 'dynamic-dns.net'], 'delays': [(10, 5, 10), (50, 30, 50), (-1,
150, 300)] [REDACTED] 'cid': 61336226}

4/13


https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/hellhounds-operation-lahat/?utm_source=pt&utm_medium=article&utm_campaign=hellhounds-operation-lahat-part-2&utm_content=esc
https://github.com/n1nj4sec/pupy

Below is a detailed chart showing how Decoy Dog works on Windows hosts.

LINIX infrastructure

Windows

Service created C2 servers
) == | D ————— «
Service start E -

(Microsoft AE[:I]L-Int
Service, Microsoft
Viewer Service)

. (I8
Windows Decoy tunnel V‘ DGA channel

Dog Loader Runs in
1010} memory T
» [0l1l0;
(BIN] Generates DGA
; Decoy Dog RAT (version 2) domains
V7 \N
R\ 74

Figure 6. Detailed chart showing how Decoy Dog for Windows works

In the course of our research, we detected samples targeting Windows, the oldest of these compiled on 29.11.2019,
and the newest one, on January 3, 2024. Besides Decoy Dog, the malicious actor made use of the well-known Sliver
framework with the C2 server 31.184.204[.]42 (ns2.maxpatrol[.]Jnet). Similar samples are examined in detail in "Sliver
Implants under a Lens: Extracting the Configuration and Other Useful Data". The table below shows all of the
Windows samples we obtained.

Date  Description SHA-256 Name
First Stage
(Decoy Dog
29.11.2019 Loader for 9a977571296ae1548c32df94be75eec2a414798bee7064b0bf44859e886a0cfa testvec.exe
Windows):
test version
First Stage
o (Decoy Dog
Loader for
Windows)

First Stage
30.11.2022 ggg‘g E)?g €27d1bab901c1bb414d0849c5¢132faa8c7c6a61357d9627a7d2785270034793 Microsoft.exe
Windows)

First Stage

(Decoy Dog _
29.01.2023 Loader for 31b21de71f2162e8da1be8483f3a5d019b0c817832bc11a9f307b6b36821ca54

Windows)

First Stage

(Decoy Dog
16.04.2023 Loader for 18d4a3a92b24b2ad75115a44fe2727081316eca346499a4aa00aa13713cf00cb —
Windows)
First Stage
(Decoy Dog
Loader for
Windows)

First Stage

(Decoy Dog .
16.08.2023 Loader for d9a8151aff9d1c061826a9812ed9a6600805c74a519df333513fd4a79d2d4e61 NtpService.exe

Windows)

First Stage
06.11.2023 (L?):‘é‘g f'?)fg 07fe71b256¢1c913b0f3e3fab7e53d21a3d17499bebde5505975743797a77c4  Apache ActiveMQ.exe
Windows)
Second
Stage
08.11.2023 (Decoy Dog e19dc185e99cfdc0c25f18fb34ffabff2a4877d6d5843e4c67c05ce182f9780e NPipeX64_32.dll
for
Windows)

14.07.202 4d30fd05c3bdac792e0a011892e2cad02818436484e81b6de6a02928149bc92d MaxPatrol SIEM Agent.ex

06.05.2023 9a96¢7b0595f628027 c4f4caeeced 75ef742c420adf2fde8df934c6ce6481fb5 -

5/13


https://rt-solar.ru/solar-4rays/blog/3843/

Date  Description SHA-256 Name

Second
Stage
08.11.2023 (Decoy Dog 106436a4fafe00112b19b1374456¢1746b988950b71d700680088d74494e4936 r_tarif.dll2Qur
for
Windows)
27.12.2023 Sliver
27.12.2023 Sliver

First Stage

02.01.2024 (LE’;‘Q?F’ f%‘r’g 1b8b4be020d3350d025¢7a245eb0d7 166ff2c329dc92af175ef0499chbas8307 1

Windows)
First Stage

03.01.2024 (L?)Z‘é‘g E)‘:g a03e2ca143e867a99e2bc73bd4e5c2dd078a9f671aaladce9611a8bc39a769e2 R_TARIF.VIEWS X86.EX

Windows)

510da6d88ae4dd51d62796023a18b39db08a016ee4ee7178b1afdc91c58f%e1e —
6¢cb2979aa1fddd42df2ba596f705ceObbdb2ec246649218d598d779769857¢c21 -

AccSrvX64__STABLE__ 2
11-10.exe

Most of the samples contain the domain dns.msftncsi.com in their configurations, a test server for the Windows
Network Connectivity Status Indicator, NCSI.

After examining the configurations of all samples we obtained during the research, we identified SSL certificates that
the backdoor used to encrypt its connections with remote hosts. The certificates contained the earliest notBefore
option at the end of 2021 (12/26/2021 at 21:51:52), and the latest option, on 11/8/2023 at 13:48:36. This places the
campaign start at the end of 2021. Certificates were issued for one and three years from the time the images were
generated. This certificate generation algorithm is implemented in the public Pupy RAT project.

@R Certificate K | @&l Certificate K

General Details Certification Path General Details Certification Path

\’g’,a Certificate Information

\@a Certificate Information

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Issued to:  ZvIfwCFrUf

Issued by: ZvIfwCFrUf

Valid from 12/26/2021 to 12/26/2022

Install Certificate...  Issuer Statement

oK

Figure 7. Examples of certificates

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Issued to: [UXZOrmBkZ

Issued by: luxZOrmBkZ

Valid from 11/8/2023 to 11/7/2024

Install Certificate...  Issuer Statement

oK

After analyzing all of the samples we found, we compared their features, the issue dates of the certificates in the
configuration, and the VirusTotal upload dates. The relevant feature set appeared in between these dates—this time
range is marked dull blue in the image. This data can be used to tentatively distinguish two versions of Decoy Dog.
Compared with Pupy RAT, the project migrated to Python 3.8, added new transports, and received a DGA
mechanism. The second version, created between April 2022 and February 2023, gets a telemetry scriptlet described
in detail in the previous article, a dynamic configuration, and a Special launcher to run as a server on the local

machine.

Figure 8. Timeline of new features

6/13


https://learn.microsoft.com/en-us/windows-server/networking/ncsi/ncsi-frequently-asked-questions
https://www.openssl.org/docs/man1.1.1/man1/x509.html
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/hellhounds-operation-lahat/?utm_source=pt&utm_medium=article&utm_campaign=hellhounds-operation-lahat-part-2&utm_content=esc

The earliest Decoy Dog loader sample, compiled at the end of 2019 (11/29/2019), deserves special attention. The
sample is the original version of the loader whose code contains several debugging strings. This suggests that the
development of the Decoy Dog loader began in 2019.

if ( SHGetFolderPathA(9i64, CSIDL_PROFILE, @i64, @, Filellame) < 0 )
ExitProcess(@x7Eu);

LODWORD(v@) = @;

for ( 1 = FileName; *i; ++i )

vB = &i[1i64 - (_QWORD)FileMame];

o+

h = "\\AppData\\\\Local\\\\Temp\\\\loader.log";
= "\
v5 = &FileName[(unsigned int)ve];

=

Figure 9. Generating a log path

*(_DWORD *)&payload path[( _QWORD)v19 + 44] = 'NIB.';
write_to_log("Input file: ");
write to log(Filename);
write_to_log("\n");
write_to_log("Basename: ");
write to log(vl3);
write_to_log("\n");
ileA = CreateFileA(Filename, Ox80000000, @, 0i64, 3u, 0x80u, Bi6d);

IpAddress = VirtualAlloc(@i6d, FileSize, 0x3000u, 4u);
Figure 10. Downloading a payload

3snake

The malicious actor used a modified open-source 3snake utility to obtain credentials on hosts running Linux.

To reduce excess functionality and evade signature detection, the command-line start option was disabled in the
utility, which left just demon mode. Additionally, the utility ignores "-0" values, instead using the hardcoded path
/var/log/apt/term.log.gz for outputting compromised credentials.

Unlike the original utility, the path to the file in the sample and intercepted data are encrypted with the RC4 algorithm.
The utility can intercept SIGINT, SIGQUIT, SIGHUP, SIGPIPE, SIGTERM, SIGSEGV, SIGBUS, SIGILL, and
SIGCHLD system-call interrupts. It also adds intercept_openldap to the already-available intercept_ssh,
intercept_sudo, intercept_su, intercept_ssh_client, and intercept_passwd functions. This is how the malicious actor
stole a number of credentials for further movement across the network.

Function name Segment Start

intercept_sudo text 0000000000002B80
intercept_su text 00000000000030D0

intercept_ssh text 0000000000003580
intercept_ssh_client .text 0000000000003810
intercept_passwd  .text 0000000000004FEQ
intercept_openldap .text 0000000000005450

Figure 11. Intercept functions in 3snake

7/13


https://github.com/blendin/3snake

int _ fastcall main(int argc, const char rgv, const char
int v4; // eax
char *v5; // ri4
size_t v6; // rax

signal(2, exitsig);
signal(3, exitsig);
signal(1l, exitsig);
signal(13, exitsig);
signal(15, exitsig);
signal(11, exitsig);
signal(7, exitsig);
signal(4, exitsig);
signal(17, handlechild);
if ( geteuid() )
needroot();
while ( 1 )
{
do

{

v4 = getopt(argc, (char *const *)argv, "do:");
1'F ( vd == -1 )
daemonize((unsigned int)argc, argv, envp);

}
while ( v4 == 100 );
it (va 1= 111 )
break;
v5 = optarg;
v6 = strlen(optarg);
outfile = (char *)calloc(v6 + 1, 1ulLl);

"

__isoc99 sscanf(vs, s", outfile);

}

return ©;

} |

Figure 12. Main function in the modified 3snake utility

Initial Access

In two incidents, the attackers managed to penetrate the victims' infrastructure via a contractor. By compromising
SSH login credentials, the malicious actor got in and installed the Decoy Dog backdoor.

We also managed to obtain content from the C2 server net-sensor[.Jnet and discovered that the malicious actor
disguised Decoy Dog as ISO images for the iMind online meeting, video conferencing, and webinar service.
Unfortunately, we could not find out under what pretext and how exactly the malicious actor made the victims run one
of the ISOs. Note that in September 2023, the National Computer Incident Response and Coordination Center issued
a notice about an increased frequency of computer incidents associated with exploiting a vulnerability in the iMind
video conferencing service and recommended updating iMind to version 3.19.

€ & MNotsecure | nad.net-sensors.net/sery bedciza

Directory listing for /services/_1S0/9be9cf2a-53d6-11e6-8cc5-7f8ab54eSbat/

Figure 13. C2 folder listing

8/13


https://safe-surf.ru/upload/ALRT/ALRT-20230906.1.pdf

mind-live_3.12.31+23.07.23.01.30.is0  26.12.2023 ) ®aiin obpaza avcka
mind-live 3.12.30+23.06.23.01.95.is0  26.12.2023 ) ®aiin obpaza ancka
mind-live 3.12.30+23.06.23.01.90.is0  26.12.2023 ) ®aiin obpaza ancka
mind-live_3.12.30+23.06.23.01.80.iso  26.12.2023 13:36 ®aiin obpaza ancka
mind-live_3.12.30+23.06.23.01.70.iso  26.12.2023 : ®aiin obpaza ancka
mind-live_3.12.30+23.06.23.01.63.is0  26.12.2023 : ®daiin obpaza ancka
mind-live_3.12.30+23.06.23.01.62.is0  26.12.2023 : ®daiin obpaza ancka
mind-live_3.12.30+23.06.23.01.61.is0 26.12.2023 12:38 ®aiin obpaza aucka
mind-live_3.12.30+23.06.23.01.50.is0  26.12.2023 12:38 ®aiin obpaza aucka

mind-live 3.12.30+23.06.23.01.40.iso0 26.12.2023 12:38 ®aiin obpaza ancka

mind-live_3.12.30+23.06.23.01.30.iso  26.12.2023 12:36 ®aiin obpaza avcka

Figure 14. Contents of the imind folder, ISO images containing Decoy Dog
Victims

As a result of the research into the group's activities, we detected a number of previously unknown attacks

on organizations located in Russia: the number of confirmed victims more than doubled, reaching 48. At the time

of preparing part one of the research report, we were aware of 20 Hellhounds victims. An analysis of the new attacks
suggests that, in addition to focusing on the public sector, the attackers have been harassing Russian IT companies,
most of these being contractors for critical organizations. These companies were presumably targeted for trusted
relationship attacks. The up-to-date victim breakdown by industry looks as follows:

@ Information Technolog® Government @ Space industry @ Telecommunicatior® Education Energy sector
® Security @ Developer sector® Transport and logistict® Medical @ Mining industry @ Retail

© Positive Technologies

Figure 15. Victims by industry

Conclusion

The Hellhounds group has continued to attack Russian organizations into 2024. Our investigations show that the
malicious actor uses a variety of techniques for compromising and gaining control over company infrastructures, and
that it began developing its toolkit at least as early as 2019.

The attackers have long been able to maintain their presence inside critical organizations located in Russia. Although
virtually all of the Hellhounds toolkit is based on open-source projects, the attackers have done a fairly good job
modifying it to bypass malware defenses and ensure prolonged covert presence inside compromised organizations.

Authors: Aleksandr Grigorian and Stanislav Pyzhov at Positive Technologies

The authors would like to thank the Incident Response and Threat Intelligence teams at the PT Expert Security
Center for their help in preparing this article.

The sections below contain information about all of the samples we obtained and the up-to-date TTPs.
Verdicts by our products
MaxPatrol SIEM

Modify_and_Start Remote_Service
Service_Created_or_Modified

4192 Kb
4192 Kb
4192 Kb
4192 Kb
4192 Kb
4192 Kb
4192 Kb
4192 Kb
4192 Kb
4 450 Kb
4 450 Kb

9/13


https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/hellhounds-operation-lahat/?utm_source=pt&utm_medium=article&utm_campaign=hellhounds-operation-lahat-part-2&utm_content=esc

PT Sandbox

apt_linux_ZZ_DecoyDog__Trojan__FirstStage
apt_linux_ZZ_DecoyDog__Backdoor__Pupy
apt_linux_ZZ_DecoyDog__Backdoor__EncryptedPayload
apt_mem_ZZ_DecoyDog__Backdoor
apt_win_ZZ_DecoyDog__Trojan__FirstStage
tool_multi_ZZ_3snake__HackTool

tool_win_ZZ_ Sliver__Backdoor

tool_multi_ZZ_Sliver__Backdoor

PT Network Attack Discovery

SUSPICIOUS [PTsecurity] Possible DecoyDog DNS Tunneling sid: 10010052

SUSPICIOUS [PTsecurity] Possible DecoyDog DNS Tunneling sid: 10010053

REMOTE [PTsecurity] Possible PupyRAT TLS JAS3 fingerprint sid: 10011346

REMOTE [PTsecurity] Possible PupyRAT sid: 10008450-10008452

REMOTE [PTsecurity] PupyRAT HTTP Echo Scan sid: 10006391

REMOTE [PTsecurity] PupyRAT HTTP sid: 10006389

REMOTE [PTsecurity] PupyRAT TCP ping sid: 10006390

REMOTE [PTsecurity] PupyRAT SSL Cert 10011347-10011351, 10004069, 10008396-10008397, 10008449

Analysis tools

Our tools for Decoy Dog analysis are available on GitHub.

I0Cs

File indicators

Name

testvec.exe

MaxPatrol SIEM Agent.exe

Microsoft.exe

NtpService.exe

Apache ActiveMQ.exe
AccSrvX64_ STABLE_ 2016-

11-10.exe

R_TARIF.VIEWS_X86.EXE

NPipeX64_32.dll
r_tarif.dll2Qur

systemd-inputd
salt-slave
snapmount
plymouthd
crond
mysqlrestore
mdSsum.pm
dtmf

atd
UPDATE.SH
atd

atd

atd

dcrond
dcrond
TNTb

ucs-25.1.1034-debian10.tar

crond
nmbtrapd
nmbd

MD5 SHA-1
First Stage (Decoy Dog Loader for Windows)
7e0c85852b2cd932626fcf284ca72978 c8ccf6e20cde537f3da64aebd1f80b144a4c8e0a 9a977!
2c016c91181d4182a16845725bf0b315 2be016b6b0dd9d57f2985a6ad0df85f5538d9623 4d30fc
4479cc492fa443af1461ebd768dcd1c3  5Sebfldbcd5e16bcd4695777a7931ff4dc13d586a e27d1|
ef6c7eb5518d58bc0b921d37265b0db4 c0fd9928b1755c047529a0b91517882bf74bc5e4  31b21:
3dc4391eb6170c26336938839246022f c4ef4c518c44eda803200b8fad080c0f1ff3ed15 18d4a
321e4b64bcedc76a89cca86853d30c09 b1fceda9a56d17fd1520105a6d52fdf868c4cead  9a96¢:
9200c356b485ca61ec88258f0800657a dc76c7586e1946ac120111d3a35937526a7¢cf140 d9a81!
b8932033b53ca08967100c58e12126be 6f30131181d81129c2f59d050214f47a6eedabbe  07fe71

8d6e4cd33145ae084aa184fd0875c8f6 fc5936e0e290f2f41a46eb14c05500a4236ac0c7  1b8b4l

€908dab041ae249f478bb22ac05e4b18 83c8168f7706148a6f28145872a7f3bf01037239  al03e2
Second Stage (Decoy Dog for Windows)
10be9cab1ef86589951ddcfddc3d9672 b3a6f0d8daf0347f56e95bf56ch60a7eabf711cb  e19dc
914f932feb7e08f3e0396e40b8eadbe7 54984e656f2bf1ed874b8b281d5abacdd517e51b 10643!
Decoy Dog for Linux
¢89d431abb6b5cc28c86196fbf898684 06335756b2a9afcf4147af25b06e30f63e5d52b9  bcabd:
2a9137f615fa56f9ae11fa7c17963dad  a1790420cb2f546a79ddaeefacfd3b3a3b781e7c  9d909
485ad3a834d81e63be6c03e94371c007 bed428acb644a1cd1173f9c2a8b5db3c5fb38f795b  299a7:
5e672d6d5¢2fc6190bd670409b987dfd ee7ce10b16d4052cf15¢897d98a9e286ab63c30b 75bf7¢
04fceadbf75070e47f5f3e7e6958995f  cb883f4ea73eef125d9ba2b945ed1797a679ca7e 8184a:
b28b70b981a3b8e98874d23b24fc7dbd c3669cc6fcc8adeed8c3cad540a8f5402e4ddb79  83a29:
15ebf623c05744403a163bd958522511 b7724bfa0041c0ae9882d880669751€290f6e88e e67c5’
bf27f6608cea8343c287b355244762e9 e46c422e5336c499b852ca77b4ab97b2607e54bf 04241
bc0200af1ac2ed44cdeefcb9907f4d1d3  24e7b9e904e90bfc9alaadd8e347512ccbc895f6  2c726t
adac1dc0ec3dcf28157ab09d35d0cfcc  dd053b9cb14429cd4eec1b36e1a87f0a47289193 07dfbs
5be93fc5c858c3474bbfbc2555843966 3ab8a4e40f91febfdc2e6d69e162e3efc8b8b448  5264d:
885fa41b7e8e7d033cd01ee2e224cca2 a864cf53550d6daf38149d345d4563b65dd8580a e42e4.
9f29794effd56e4075bb9f6e28b14678 01e71387a3ab05d73caed5435a8437faa8b66198 025d9
f19890d3f004cb9ae23398a006e358f5 acOfe4a4a400265a7d6a68a558443dfe77e0dfb4  d53feC
b8b11cfde33f285402ac17¢c50e89ce5e  8107ca980e32c8c905aa86c81c20fe799181bef8 95172
6f40bc303944be1e322dcf5c40e3cde8 286dc3e3a055e37f47ceefd5cf0fa55a6ab10111  dd83e’
8816¢53603205717e5f1269385841784 b79b0fba2e698ef78747fb412cfbab3364fe3125  f11afd(
f09c0d5883a221d2e5f762480e946a78 506386147d393cef81019dda55ac85125914c6be Oeb2ct
5f721ea01a017832be0bc4ed60f73f9d  39a54217868490ce71d6d0eaf6b9b2a2d747b3ca 306171
6f18d4f75e0cb13dbb868ce7c6fe8ab8 b86ac0e9c1d0ef17c9f7ec406d51d4b2ed08ff67  flaa7c
639826f50120006342e23a409ff6fa70  b0827b53e4d2a3d53f3ab467157f17377a243eaf 30fd37
250af8e186b4d72b70036f090e9aee25 98c4d06e1c09907c3a4734668fef1ccd2abffcbb  5ab70:
67aee8a9d41240c462ee7d7023977d84 eaf5fc2f0d9a84ff77008f805be4025df1085¢c20 66b7ce

10/13


https://github.com/hackumo/tools

Name
dtmf
md5sum.pm
nmbtrapd
rpc_lan.so
nmbd
aptitude-common
UPDATE.SH
dcrond
dcrond
dcrond
atd
atd
atd
smartmond
dcrond
atd
dcrond
atd
dcrond
htop
systemd-crgoupsd

AzimuthF.exe_
AzimuthF_2.exe_

db-healthmon

mind-

live_3.12.30+23.06.23.01.30.iso

mind-

live_3.12.30+23.06.23.01.40.iso

mind-

live_3.12.30+23.06.23.01.50.iso

mind-

live_3.12.30+23.06.23.01.61.iso

mind-

live_3.12.30+23.06.23.01.62.iso

mind-

live_3.12.30+23.06.23.01.63.iso

mind-

live_3.12.30+23.06.23.01.70.iso

mind-

live_3.12.30+23.06.23.01.80.iso

mind-

live_3.12.30+23.06.23.01.90.iso

mind-

live_3.12.30+23.06.23.01.95.iso0

mind-

live_3.12.31+23.07.23.01.30.iso

Network indicators

31.184.204.42
beacon.net.eu.org
c.glb-ru.info
claudfront.net
maxpatrol.net
nsdps.cc
rcsmf100.net
wmssh.com
dw-filter.com
net-sensors.net
mvs05.zyns.com

File signatures

MD5 SHA-1
cd10a6¢402c6ccc870afa0001409c27f  943918176f941b162d668ea9642ba63d51450ff9  cb199:
9fb96e93ba9962919b261ae7dfe2b120 8f943b9f82892292162eb7964da3c9168df28116 d8967
bc7b5aa2a7f1e178fa8997c8d76ef041  f4c1f2882e20792463638cb75c4bb64e7aaf0401  e38dcc
093f35facc67ceel3a8c2cca8be8b2db6a 2c568ee8524a72cee2ae3002039f846988beab70 f466ec
b2538dbf30dc3ach95930394e0ff3498 50105c6e64ccf058d604cdcf9123ed8bf163c41b  fd729¢8
0e22f3587c519c1f0edfc57a04d66edb  d7f31bbb9a7cbe911f5ae3253e650b1fa7ccdbdc  b3538:
537b8e319ef65435740b3e0c28722925 226d3a29149e36690b50b93beabed4481b1a48e6 c6728
4f2529e5be66a80e44acaeaad18b575¢c 15a6fdc79f0724d4c3b18742e5f1d73fc6839%9ac4  6da74
e35199eacdObbc06cfb2c72e14f7a659 67006e298844b578cce9888c243640f7e1f2e7c7 006251
453833594493c5064eeff8210d571224 fb0f1226903dde243ef08c26ec0c5d7880e9c291  7f55¢7
f28c7¢354b9e27e8908dd0b8dc7dal1b 444a7b477e6f7bd0d9be7add79b3e0415566169¢c d59fch
74ed22250182d13df4e1ad4b4f91d519 7c440e9421c26fe7b73ae8e213ef58b3b615ed6f  25ff8d:
6218ad1e81b1cd9364bbe0059b99bc9a 27fedf90846efe5357e11c53d87612fbf6c421d4 82746:
e1a93ced3a55b34a54b5ac0dd095da59 2ba1a6808db393296a08968c220b193fae42¢c21b ee8dd:
d80b3ff086aed177bb87¢c317188b92c2 2b1b5b4c7fad4a963b0ec92a5eb2e28chb6cdcOb7 aebe7t
cc7a6656832b6929722b1c38cc14b550 4450d904f695dd51eaea24e4e449707707c7852e b21e9:
b514157f9b8cbb08d476e838171050d8 e3ce85ababbc7b8b4291551abb9f0928caeb2646 121ab
33f3dd60e87aafd96adf62fcb5af725f 685ecfba19ad58f81acbb62a3fc9010128bf2000  64af32
5da97bbd438a030b0427a15c¢69af0037 8daf7589f2e417363e3cfbc714fc9b299f54a36e  834d7:
84f2fa4d139ac10124f915584dda6476 26199b999%facadald6dafe78524321e575621d73 33e90:
6ee38226efedabbf794a37d0c972702¢c 3ca21bde29ff0744edacd611d82b50d297bb447a 494c8!
26e10db16c4b00c9d4afa1d3f2c5f080 4811d92b307a2929b25b39638b35f3e5692f4451 49cdat

Sliver
b0b2176187e24710ad9b4fbbb38573b1 db3ea044e32773c12d67a49588f5a12aae09e257 510dal
fd13efb096377f8bbf8b754874c40262 480c2a12dfc1900ab9bad635caf6c507a300623¢c  6cb29!

3Snake
18417672efbe00f3ecdd700c442137fd  ac469df608ef049708babefe72f4493ac20cdfd0 1b7d2!
ISO Images

8a1834e81ffb4ded5b818db7db8e543b 9206f83e69c53c4460a30cc4046e59f50e25a1ad  0d6d8!
8a1834e81ffb4ded5b818db7db8e543b 9206f83e69c53c4460a30cc4046e59f50e25a1ad  0d6d8!
6703e425619a766ab521109885b51248 1d3ab04ace6895b042beb2d7ccfcd6e6ef5e620c  ¢6207+
6703e425619a766ab521109885b51248 1d3ab04ace6895b042beb2d7ccfcd6ebef5e620c  ¢6207+
6703e425619a766ab521109885b51248 1d3ab04ace6895b042beb2d7ccfcd6ebef5e620c  ¢6207+
6703e425619a766ab521109885b51248 1d3ab04ace6895b042beb2d7ccfcd6eb6ef5e620c  ¢6207+
6703e425619a766ab521109885b51248 1d3ab04ace6895b042beb2d7ccfcd6ebef5e620c  ¢6207+
6703e425619a766ab521109885b51248 1d3ab04ace6895b042beb2d7ccfcd6ebef5e620c  ¢6207+
6703e425619a766ab521109885b51248 1d3ab04ace6895b042beb2d7ccfcd6e6ef5e620c  ¢6207+
6703e425619a766ab521109885b51248 1d3ab04ace6895b042beb2d7ccfcd6ebef5e620c  ¢6207+

6703e425619a766ab521109885b51248 1d3ab04ace6895b042beb2d7ccfcd6e6ef5e620c  ¢6207+

11/13



rule PTESC_apt multi_ ZZ DecoyDog_ Trojan_ FirstStage v2{

strings:

Sclefia sbox =

{57 49 D1 C6 2F 33 74 FB 95 6D 82 EA OE BO A8 1C}

$linux = "machine-id"

Swindowsl = "\x00http\x00"

$windows2 = "getaddrinfo"

Swindows3 = "VirtualProtect"

Swindows4 = "GetModuleFileNameA"

Swindows5 = "ReadFile"
condition:

( uintlébe ( O
== 0x7F454C46 and $linux ) and
}

) == 0x4d5a and all of ( $windows* ) or uint32be ( 0
Sclefia sbox and filesize < 100KB

rule PTESC tool multi 7zZ 3snake HackTool{

strings:
$al = "/proc/%d/cmdline"
$a2 = "/proc/%d/status"
$a3 = "/proc/%d/exe"
$ad = "/usr/bin/ssh"
$ab = "/usr/local/bin/"
$a6 = "/usr/local/sbin/"
$bl = "intercept ssh"
$b2 = "sshd: [net]"
$b3 = "sshd: [accepted]"
$b4 = "[-] Plisteneter %d has been killed %d"
condition:
( uint32be ( 0 ) == 0x7F454C46 ) and 4 of ( $a* ) and 2 of ( S$b* )
}
MITRE TTPs
ID Name Description

Develop Capabilities:

T1587.001 Malware

T1190 Expl(_)it F_’ublic-Facing
Application

T1199 Trusted Relationship
T1078 Valid Accounts
T1021.004 Remote Services: SSH

Create or Modify System
Process: Systemd Service
Create or Modify System
Process: Windows Service

T1543.002

T1543.003

Execution Guardrails:
Environmental Keying
Deobfuscate/Decode Files
or Information
Obfuscated Files
T1027.002 or Information: Software
Packing
Masquerading: Match
T1036.005 Legitimate Name
or Location

T1480.001

T1140

T1056 Input Capture

System Information

T1082 :
Discovery

Dynamic Resolution:
T1568.002 Domain Generation
Algorithms

Resource Development

The malicious actor develops its own attack tools based on open-
source solutions for attack orchestration

Initial Access
The malicious actor compromises public-facing web services

The malicious actor moves via adjacent infrastructures

The malicious actor used legitimate accounts to log in via SSH

The malicious actor connects to a compromised host over SSH
Persistence

Decoy Dog gained a foothold in the system using the dcrond or atd
services

Decoy Dog gained a foothold in Windows-based infrastructure via
system services

Defense Evasion

The malicious actor leveraged the victim host machine ID to encrypt
a payload and configuration file

The group encrypted its components with CLEFIA to protect these
from detection and analysis

The group used a modified UPX algorithm as protection from
detection and analysis

The malicious actor used malware that copied the names of system
utilities to avoid detection

Credential Access

The malicious actor used a modified 3snake utility to intercept
credentials

Discovery

The malicious actor obtained the machine ID of an infected host
to compile a Decoy Dog Loader that could run on the specific host
only

Command and Control

The group developed a domain generation algorithm (DGA)

12/13



ID Name Description
T1568.001 Dynamic Resolution: Fast

Flux DNS The group used DDNS services
T1071.004 Application Layer Protocol: DNS tunneling is the main method used by the Decoy Dog RAT for
' DNS talking to its C2 server
Impact
T1485 Data Destruction The group destroyed Linux- and Windows-based infrastructure

in an incident that involved a telecom company

13/13



