
1/14

www.welivesecurity.com
/en/eset-research/moon-backdoors-lunar-landing-diplomatic-missions/

To the Moon and back(doors): Lunar landing in diplomatic missions

ESET Research

ESET researchers provide technical analysis of the Lunar toolset, likely used by the Turla APT group, that infiltrated a
European ministry of foreign affairs

Filip Jurčacko

15 May 2024
 • 
, 30 min. read

ESET researchers discovered two previously unknown backdoors – which we named LunarWeb and LunarMail –
compromising a European ministry of foreign affairs (MFA) and its diplomatic missions abroad. We believe that the
Lunar toolset has been used since at least 2020 and, given the similarities between the tools’ tactics, techniques, and
procedures (TTPs) and past activities, we attribute these compromises to the infamous Russia-aligned
cyberespionage group Turla, with medium confidence. We recently presented our insights from this research at this
year’s ESET World conference and provide more details about our findings in this blogpost.

Key points of the blogpost:

ESET Research discovered two previously unknown backdoors – LunarWeb and LunarMail – used
in the compromise of a European MFA and its diplomatic missions.
LunarWeb, deployed on servers, uses HTTP(S) for its C&C communications and mimics legitimate
requests, while LunarMail, deployed on workstations, is persisted as an Outlook add-in and uses
email messages for its C&C communications.
Both backdoors employ the technique of steganography, hiding commands in images to avoid
detection.
Both backdoors utilize a loader that uses the DNS domain name for decryption of the payload,
share portions of their codebases, and have the unusual capability of being able to execute Lua
scripts.
The loader can have various forms, including trojanized open-source software, demonstrating the
advanced techniques used by the attackers.

Turla, also known as Snake, has been active since at least 2004, possibly even dating back to the late 1990s.
Believed to be part of the Russian FSB, Turla mainly targets high-profile entities such as governments and diplomatic
organizations in Europe, Central Asia, and the Middle East. The group is notorious for breaching major organizations,
including the US Department of Defense in 2008 and the Swiss defense company RUAG in 2014. Over the past few
years, we have documented a large part of Turla’s arsenal on WeLiveSecurity.

Our current investigation began with the detection of a loader decrypting and running a payload, from an external file,
on an unidentified server. This led us to the discovery of a previously unknown backdoor, which we named
LunarWeb. Subsequently, we detected a similar chain with LunarWeb deployed at a diplomatic institution of a

https://www.welivesecurity.com/en/eset-research/moon-backdoors-lunar-landing-diplomatic-missions/
https://undefined/en/our-experts/filip-jurcacko/
https://undefined/en/our-experts/filip-jurcacko/
https://interaktiv.br.de/elite-hacker-fsb/en/index.html
https://www.welivesecurity.com/wp-content/uploads/2020/05/ESET_Turla_ComRAT.pdf
https://www.welivesecurity.com/2020/03/12/tracking-turla-new-backdoor-armenian-watering-holes/
https://www.welivesecurity.com/wp-content/uploads/2019/05/ESET-LightNeuron.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/08/Eset-Turla-Outlook-Backdoor.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/01/ESET_Turla_Mosquito.pdf
https://www.welivesecurity.com/2020/12/02/turla-crutch-keeping-back-door-open/


2/14

European MFA. Notably, the attacker also included a second backdoor – which we named LunarMail – that uses a
different method for command and control (C&C) communications.

During another attack, we observed simultaneous deployments of a chain with LunarWeb at three diplomatic
institutions of this MFA in the Middle East, occurring within minutes of each other. The attacker probably had prior
access to the domain controller of the MFA and utilized it for lateral movement to machines of related institutions in
the same network.

Further examination uncovered additional pieces of the puzzle, including components utilized in the initial stage of the
compromise and a limited number of commands issued by the attacker. The timestamps in the oldest samples and
the versions of the libraries used suggest that this toolset has been operational since at least 2020, possibly earlier.
Our technical analysis focuses on the techniques these backdoors employ, such as steganography, and
communication methods.

Victimology

According to ESET telemetry, the compromised machines that we managed to identify belong to a European MFA
and are primarily related to its diplomatic missions in the Middle East.

Technical analysis
Initial access

We don’t know exactly how initial access was gained in any of the compromises. However, recovered installation-
related components and attacker activity suggest possible spearphishing and abuse of misconfigured network and
application monitoring software Zabbix. Potential Zabbix abuse is suggested by a LunarWeb installation component
imitating Zabbix logs, and a recovered backdoor command used to get the Zabbix agent configuration. Additionally,
evidence of spearphishing includes a Word document installing a LunarMail backdoor via a malicious macro.

Below, we provide details of the installation-related components and initial attacker activity.

Stage 0 – LunarWeb initial server compromise

While we don’t have the full picture of the initial compromise, we found an installation-related component in one of the
server compromises – a compiled version of an ASP.NET web page originating from following source files:

<IIS_web_root>\aspnet_client\system_web.aspx
<IIS_web_root>\aspnet_client\system_web.cs

The system_web.aspx filename is a known IoC of Hafnium, a China-aligned APT known for exploiting vulnerabilities
in Microsoft Exchange Server software. However, we believe this is either a coincidence or a false flag.

When the system_web.aspx page is requested, it responds with a benign-looking Zabbix agent log. However, the
page covertly expects a password in a cookie named SMSKey. If provided, the password (combined with the salt
Microsoft.SCCM.Update.Manager) is used to derive an AES-256 key and IV for decrypting two embedded blobs,
which are then dropped to two temporary files in a directory excluded from scanning.

While we don’t know the password, the file sizes match further stages in the compromise chain – the Stage 1 loader
and Stage 2 blob – containing the LunarWeb backdoor. Lastly, either the attacker or an unknown component renames
and moves the two temporary files to their final destinations, and sets up persistence.

During our investigation, we found that the attacker already had network access, used stolen credentials for lateral
movement, and took careful steps to compromise the server without raising suspicion. The attacker’s steps included
copying two log files over the network; these files were deliberately named to mimic Zabbix agent logs. The attacker
moved them to the IIS web directory as the system_web page, and sent a HEAD request to the page with a
password, which resulted in the creation of two files with .tmp filename extensions. The system_web page files were
then deleted, and the dropped .tmp files containing Stages 1 and 2 were moved to the following locations:

C:\Windows\System32\en-US\winnet.dll.mui
C:\Windows\System32\DynamicAuth.bin

Finally, to maintain access and execute their code, the attacker set up a Group Policy extension in the registry using
the Remote Registry service.

Stage 0 – LunarMail initial user compromise

In another compromise, we found an older malicious Word document, likely from a spearphishing email. Despite
being a DOC file, it’s actually in DOCX format, which is a ZIP archive that can hold extra content. This document has
unusual components: 32- and 64-bit versions of a Stage 1 loader, and a Stage 2 blob containing the LunarMail
backdoor.

They are installed using a VBA macro, executed on document opening, that does the following:

https://www.zabbix.com/
https://news.sophos.com/en-us/2021/03/05/hafnium-advice-about-the-new-nation-state-attack/
https://www.welivesecurity.com/2021/03/10/exchange-servers-under-siege-10-apt-groups/


3/14

1. Calculates a victim ID from the computer name and informs its C&C server by pinging a specific URL with the
ID in its subdomain.

2. Creates the directory %USERPROFILE%\Gpg4win and extracts the appropriate files from the extra content in
the ZIP/DOCX – Stage 1 loader to gpgol.dll and Stage 2 blob to tempkeys.dat.

3. Sets up persistence via Outlook add-in registry settings and pings another URL containing the ID.

We did not obtain the whole document, but it probably contains a lure that is enticing enough, since it can't be
accessed otherwise, to convince the victim to enable macros.

The paths and names used mimic Gpg4win’s Outlook add-in, GpgOL. Once deployed, the Stage 1 loader appears in
Outlook Add-Ins, as shown in Figure 1.

Figure 1. Malicious Outlook add-in

Lunar toolset

Following our analysis of the installers introduced in the previous section, we examine the loaders and finish with
analysis of their payloads – two previously unknown backdoors. Figure 2 outlines the components in the two
observed compromise chains.

Figure 2. The two observed Lunar toolset compromise chains

Stage 1 – LunarLoader

The execution chain begins with a loader that we have named LunarLoader. It uses RC4, a symmetric key cipher, to
decrypt the path to the Stage 2 blob and reads an encrypted payload from it. To ensure that only one loader instance
is active, it attempts to open and then create a mailslot with a unique name, instead of a common synchronization
object such as mutex or event. It also creates a decryption key, derived from the MD5 hash of the computer’s DNS
domain name, which it verifies. The payload is then decrypted using AES-256, resulting in a PE file. LunarLoader

https://gpg4win.org/
https://learn.microsoft.com/en-us/windows/win32/ipc/about-mailslots


4/14

allocates memory for the PE image and decrypts the name of an exported function in the PE file, which is then run in
a new thread. This function contains a reflective loader.

Using the DNS domain name for payload decryption serves as an execution guardrail. The loader correctly executes
only in the targeted organization, which may hinder analysis if the domain name is not known.

LunarLoader can have a standalone form or be a part of trojanized open-source software. We observed one case of
the latter, with a trojanized AdmPwd, which is a part of Windows Local Administrator Password Solution (LAPS).

We observed that LunarLoader uses three different persistence methods and several file paths, as shown in Table 1.

Table 1. Variants of LunarLoader

Persistence
method Loader path(s) Host process Note

Group policy
extension

C:\Windows\System32\en-
US\winnet.dll.mui

C:\Program
Files\LAPS\CSE\AdmPwd.dll*

svchost.exe -
k GPSvcGroup

The AdmPwd dll is a known
legitimate file path of
Microsoft LAPS.

System DLL
replacement C:\Windows\System32\tapiperf.dll wmiprvse.exe Replacing a legitimate

Windows DLL.
Outlook add‑in %USERPROFILE%\Gpg4win\gpgol.dll outlook.exe N/A

Stage 2 blob – payload container

The blob used in Stage 2 consists of four entries – including two unused strings, where the value of one is the
base64-encoded version of the string freedom or death or freedom or death (yeah,we are alive), as shown in Figure
3, and 32-bit and 64-bit versions of the payload.

Figure 3. Decoded version
of the string, which contains
a message

While the purpose of the freedom or death string in the given context isn’t explicitly explained, it’s common for
malware authors to include such strings for a variety of possible reasons, such as tracking different versions of their
malware, to serve as a distraction or false lead for analysts, or simply as a form of signature or calling card. In some
cases, we found strings instead of a 32-bit payload – such as the string shit happens.

We observed two different backdoors used as payloads. The backdoors seem to use the following DLL names in the
export directory, with these suspected meanings:

mswt[e].dll – web transport (LunarWeb)
msmt[e].dll – mail transport (LunarMail)

The e suffix is used for the 64-bit versions. The observed file paths for the blob are listed in the IoCs section.

Stage 2 payload #1 – LunarWeb backdoor

LunarWeb, the first payload we discovered, is a backdoor that communicates with its C&C server using HTTP(S) and
executes commands it receives. We observed that LunarWeb was deployed only on servers, not user workstations.

During its initialization, LunarWeb attempts to locate or create its state file, which contains entries related to its
execution. Then it decrypts strings, mostly related to communication, using RC4 with the static key C1 82 A7 04 21
B6 40 C8 9A C3 79 AD F5 5F 72 86. It also collects victim identification data and uses it to calculate a victim ID,
which is used in communications with the C&C server.

After conducting safety checks, the backdoor waits for a few hours before entering its communication loop. This delay
is skipped on the backdoor’s first run. The security checks include a limit of initial contact attempts with the C&C
server, assessing the backdoor’s lifespan, and checking C&C server accessibility. If any of the safety conditions fail,
LunarWeb self-removes, deleting its files, including the Stage 1 loader and Stage 2 blob. However, the persistence
method for the Stage 1 loader is left, potentially leaving detectable traces.

https://attack.mitre.org/techniques/T1620/
https://github.com/GreyCorbel/admpwd


5/14

Configuration and state

LunarWeb’s configuration is hardcoded into the binary, likely from manual source code changes. The configuration
varies between samples, including the C&C servers, their unreachability threshold, the communication format, and
the backdoor lifespan.

The backdoor maintains a 512-byte state structure, updated during execution and stored in a file. This file contains
three state slots, accessed by index 0, 1, or 2 as shown in Figure 4. The first two slots are modifiable, but unused by
this backdoor; only the third slot is used. State slots are encrypted using RC4 with key 99 53 EA 6A AB 29 44 EF BE
36 12 9E F2 3B 5E C9.

Figure 4. Hex-Rays decompilation showing state retrieval

The observed locations of the state files are listed in the IoCs section.

Information collection

LunarWeb collects the following information about its host computer:

unique victim identification obtained via WMI queries:
operating system version with serial number,
BIOS version with serial number, and
domain name.

further system information obtained via shell commands:
computer and operating system information (output of systeminfo.exe),
environment variables,
network adapters,
list of running processes,
list of services, and
list of installed security products.

The information is sent to the C&C server on first contact.

Communication

After initialization, LunarWeb communicates with its C&C server using HTTP(S), underneath which is a custom binary
protocol with encrypted content.

LunarWeb employs three URLs (containing IP addresses instead of domains) for different purposes. One URL is
used for first contact, uploading information about the host computer as described in the previous section. The two
remaining URLs are used for getting commands, each being on a different server. We refer to these URLs below as
command URLs.

To hide its C&C communications, LunarWeb impersonates legitimate-looking traffic, spoofing HTTP headers with
genuine domains and commonly used attributes. It can also receive commands hidden in images. Impersonated
attributes from each observed LunarWeb sample are shown in Table 2.

Table 2. Impersonated attributes

Host User-Agent Request-URI / Filename

win8.ipv6.microsoft.com
Mozilla/5.0 (Windows NT 10.0; Win64;
x64; rv:80.0) Gecko/20100101
Firefox/80.0

(Non-impersonating URIs)



6/14

Host User-Agent Request-URI / Filename

i1.c1.eset.com

Host: EES Update (Windows; U; 64bit;
BPC 9.0.2047.0; OS: 10.0.16299 SP
0.0 NT; TDB 57524; TPCAT 0; CL
1.0.0; x64c; APP ees; ASP 0.0; FW
32.0; PX 1; CD 1; RA 1; UBR 2166;
HVCI 0; SHA256 1; WU 3; HWF:
DA7506AC-AB57-4C28-BC32-
E6D90B48B66F; PLOC en_us;
PCODE 111.0.0; PAR 0; ATH -1; DC
0; PLID 375-GTM-VO6; SEAT
62f587f1; RET 5004)

[sic]

update.ver.signed

livegrid

<MFA_country_news_site>
Mozilla/5.0 (Windows NT 10.0; Win64;
x64; rv:73.0) Gecko/20100101
Firefox/73.0

(Non-impersonating URIs)

ctldl.windowsupdate.com Microsoft-CryptoAPI/6.1

/msdownload/update/v3/static/trustedr/en/authrootstl.cab

/msdownload/update/v3/static/trustedr/en/disallowedcertstl.cab

/msupload/update/v3/static/trustedr/stats

ctldl.windowsupdate.com Microsoft-CryptoAPI/6.1
/msdownload/update/v3/static/trustedr/en/authrootstl.cab

/msdownload/update/v3/static/trustedr/stats

Notable examples of impersonation include Windows services (Teredo, Windows Update) and updates of ESET
products. In cases of ESET impersonation, the attackers copied the User-Agent (where they slipped in a Host
header) and other headers used by updates of our product. Strangely, they spoofed a nonexistent domain in the Host
header.

Victim identification is included in HTTP requests, either in a cookie or a URL query parameter. The first method uses
randomly generated cookies with a 16-byte identifier (possibly a campaign ID) and a victim ID. The second method
appends the victim ID twice to the URL. The suspected campaign ID is present in samples using the second method
but is not used. LunarWeb can also use an HTTP proxy server for C&C communications, if needed.

Receiving commands

LunarWeb collects commands from the C&C server via a GET request to the command URL. The request and
response format vary across five supported formats, with a hardcoded value determining which to use. Table 3
provides an overview of these formats. We observed usage of formats 2, 3, and 4.

Table 3. Communication formats for getting commands

Format Command request
filename example

Response,
extraction,
decoding

Response
decryption,
decompression

Note

0 N/A Base64 RSA Short commands only (RSA-4096
512‑byte limit).

1 N/A None RSA Short commands only (RSA-4096
512‑byte limit).

2
update.ver.signed

disallowedcertstl.cab
(impersonation specific)

Base64 or none RSA, AES, zlib Decoding is skipped in instances
where this format is actually used.

3 <random_5_alnum>.jpg JPG RSA, AES, zlib The data is inside a JPG comment.
4 <random_5_alnum>.gif GIF RSA, AES, zlib The data is inside GIF data blocks.

Depending on the communication format, the data received from the C&C server might need decoding using the
base64 algorithm or extraction from an image. JPGs are scanned for the comment marker FF FE, while GIFs are
parsed using the giflib library. In both cases, the interesting data is embedded in the structures of the image format
and not hidden in individual pixels of an image, as in LSB steganography for example.

Communication formats 0 and 1, though not observed, simply decrypt resulting data using RSA-4096. Formats 2, 3,
and 4 are more complex. The resulting data starts with an encrypted AES seed, decrypted with RSA-4096 and used
to derive a session key. This session key is then used to decrypt the rest of the data using AES-256, followed by zlib
decompression.

After decryption and, if needed, decompression, the received data results in a command package. This package,
possessing a unique ID, is compared to the last processed ID, stored in the backdoor’s state. If they are different, the
backdoor processes the package and updates the last ID. The package may hold multiple commands. Each
command is executed, and its output sent to the C&C server in a single format, with no steganography, as described
in the ensuing Exfiltrating data section.

https://giflib.sourceforge.net/
https://ctf101.org/forensics/what-is-stegonagraphy/#lsb-steganography


7/14

To perform cryptographic operations, LunarWeb utilizes a statically linked Mbed TLS library. It has two embedded
RSA-4096 keys: one for decrypting incoming data and one for encrypting outgoing data. Both use standard
parameters and are outlined in our GitHub repository.

Exfiltrating data

First, data is zlib-compressed and encrypted using AES-256, with a session key and IV derived from the data’s size,
also producing a hash-based message authentication code (HMAC).

For AES encryption, a random 32-byte AES seed is generated and encrypted using RSA-4096. The seed is used to
derive a session key in a PBKDF-like manner, SHA-256 hashing the seed and an IV 8,192 times. The same key
derivation happens when decrypting received data. The derivation algorithm and encryption code was copied from an
older Mbed TLS sample program that was removed from the library in 2021.

Finally, the encrypted data, along with decryption and integrity metadata, is sent. If output data exceeds 1.33 MB after
compression, it is split into multiple parts of random size (384–512 KB).

POST requests to the C&C server include impersonation headers and victim identification, and their sending is
delayed by a sleep of 34 to 40 seconds. Interestingly, each command package received contains an output URL,
which is where to send the result. This could be a different URI on the same C&C server, or a completely different
server. In the limited number of command packages that we observed, the output URL was the same as the
command URL.

Commands

LunarWeb supports common backdoor capabilities, including file and process operations, and running shell
commands, including ones via PowerShell. One of the commands stands out, with the rather uncommon capability of
being able to run Lua code.

The full list of supported commands, with additional details, is shown in Table 4.

Table 4. Overview of LunarWeb commands

Type Command Details

0 Run shell commands via a BAT
file and get output 

Runs specified shell commands via a temporary BAT file %TEMP%\
<⁠random_9_alnum_chars>.bat. The output is retrieved via a pipe (also
applies to the next four commands).

1 Run shell commands and get
Unicode output

Runs the shell commands on the command line via cmd.exe /c and /U
option for Unicode output.

2 Run shell commands and get
output Runs the shell commands on the command line via cmd.exe /c.

3 Run PowerShell commands via
a PS1 file and get output

Runs specified PowerShell commands via a temporary script file
%TEMP%\<random_12_alnum_chars>.ps1.

4 Run PowerShell commands
and get output Runs specified PowerShell commands via powershell.exe -command.

5 Run Lua code
Lua code is executed using the statically linked LuaCOM library and
the Lua library, version 5.1.5. These libraries, along with the command,
were not present in the single 32-bit version of the LunarWeb backdoor
that we observed.

6 Write file Specifies the file path and content to write.

7 Read file Uses file mapping to access content instead of the regular ReadFile
API.

8 Get victim identification via
WMI

Obtains victim identification information using WMI queries, the same
information as described in the Information collection section.

9 No operation N/A

10 Update state entry in third slot
Updates an entry in the state used by the backdoor (index 2), adjusting
break duration before communication loop and after C&C contact
failure..

11 Set state content in first slot Sets the content of the state in the first slot (index 0), but its purpose is
unknown.

12 Set state content in second slot Sets the content of the state in the second slot (index 1), but its
purpose is unknown.

13 Create process and get output Creates an arbitrary process with a specified command line and
retrieves its output via a pipe.

14 Zip specified path(s) Creates a ZIP archive with specified files and directories, via the
statically linked Zipper library.

Some of the commands can output an error message referring to the commands as tasks – Format of the task is
incorrect.

We were able to recover a command package that contained multiple shell commands used for reconnaissance
executed via command 1, collecting the following: system and OS Information, user information, network
configuration and connections, environment variables, scheduled tasks, installed programs and security products,

https://github.com/Mbed-TLS/mbedtls
https://github.com/eset/malware-ioc/tree/master/turla#to-the-moon-and-back-doors-lunar-landing-in-diplomatic-missions-indicators-of-compromise
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/PBKDF2
https://github.com/Mbed-TLS/mbedtls/blob/995c66f702db3a004be1e3d822ffad64b2ad125f/programs/aes/aescrypt2.c
https://www.lua.org/
https://github.com/davidm/luacom
https://github.com/sebastiandev/zipper


8/14

firewall settings, directory listings, Kerberos tickets and sessions, shared resources, Group Policy, and local group
memberships. Additionally, a read file command (7) was used to retrieve Zabbix configuration from a specified file
path.

Stage 2 payload #2 – LunarMail backdoor

The second backdoor, which we call LunarMail, shares many similarities with LunarWeb. The main difference is the
communication method – LunarMail uses email for communication with its C&C server.

This backdoor is designed to be deployed on user workstations, not servers – because it is persisted and intended to
run as an Outlook add-in. A high-level overview of how LunarMail operates is shown in Figure 5.

Figure 5. LunarMail operation

LunarMail shares ideas of its operation with LightNeuron, another Turla backdoor that uses email messages for C&C
purposes. Although both use a similar exfiltration method, we did not find any code similarities between the two
backdoors. Other Turla backdoors with similar operation include Outlook backdoor.

Initialization

During its initialization, the backdoor decrypts a string used to initialize a regex object that is used as a filter to search
for the email profile to use for C&C purposes, which we describe later. The regex expression, and other strings in the
backdoor, are encrypted using RC4 with the static key E3 7C 9E B0 DF D1 46 48 B4 AE 8A 5F 2A A1 78 7B.

To interact with Outlook, the backdoor dynamically resolves the necessary Outlook Messaging API (MAPI) functions.

On each run, the backdoor creates a directory in the path %TEMP%\{<random_guid>}, used as a staging directory
for data exfiltration.

Configuration and state

Similar to LunarWeb, LunarMail’s configuration entries are hardcoded in the binary. It also maintains a state file, with
a single state (unlike LunarWeb, which has multiple state slots).

The configuration likely consists of conditions to find an Outlook profile for C&C communications, default exfiltration
configuration, and the backdoor’s lifespan limit.

The state is persisted in the file %LOCALAPPDATA%\Microsoft\Outlook\outlk.share with a 668-byte structure,
updated during execution. It stores, among others, a timestamp of the last executed command and current staging
directory. On subsequent runs, the previous staging directory is deleted and replaced with a new one.

Information collection

On first run, the LunarMail backdoor collects the following information:

environment variables, and
recipients of all sent email messages (email addresses).

Additionally, a batch file with shell commands to obtain further system information is decrypted but never executed.

In certain error cases, such as failure to collect the aforementioned information, the email addresses of available
Outlook profiles are collected.

Communication and commands

Running inside Outlook, the LunarMail backdoor communicates with its C&C server – receiving commands and
exfiltrating data – using email messages, via the Outlook Messaging API (MAPI).

Profile search

https://web-assets.esetstatic.com/wls/2019/05/ESET-LightNeuron.pdf
https://web-assets.esetstatic.com/wls/2018/08/Eset-Turla-Outlook-Backdoor.pdf
https://learn.microsoft.com/en-us/office/client-developer/outlook/mapi/outlook-mapi-reference
https://learn.microsoft.com/en-us/office/client-developer/outlook/mapi/outlook-mapi-reference


9/14

To communicate, LunarMail first searches for suitable Outlook profiles provided by Microsoft Exchange. The profile
conditions include having only four default folders (Inbox, Sent, Deleted, and Outbox), containing the domain of the
targeted institution in the email address, and not matching a regex pattern for various legitimate institutional emails.

The first matching profile sends initial information. For further communication, the inboxes of profile candidates are
searched for command-containing emails. This approach avoids hardcoding profiles and makes identification harder.
Additionally, commands can set a specific profile to use, which is persisted in the backdoor’s state.

Receiving commands

LunarMail identifies a profile with commands by searching email messages and attempting to parse their
attachments. The attachment must be a single PNG image with the .png extension, with the size of less than or equal
to 10 MB. It then attempts to parse IDAT chunks of the PNG file, looking for an AES seed, an exfiltration
configuration, and commands chunks. All these components are zlib-compressed and encrypted, the first using RSA-
4096 and the latter two using AES.

Interestingly, the chunks must adhere to the PNG format with verified CRCs, resulting in a valid, but noisy-looking
image due to encrypted, compressed content.

LunarMail uses the same cryptography as LunarWeb, including the Mbed TLS library, two RSA-4096 keys (listed in
our GitHub repository), and usage of AES-256 with the same key derivation algorithm. The decompressed chunk with
AES-encrypted content has a similar structure to that seen in LunarWeb.

The decrypted, decompressed exfiltration configuration has a specific structure including configuration ID, email
address, subject, body, and attachment name and extension.

The exfiltration configuration structure mirrors LunarWeb’s command package metadata, specifying the command
outputs’ destination and an ID to avoid duplicate commands, stored in state. Once decrypted and decompressed,
LunarMail commands have a structure identical to LunarWeb’s. Each parsed command is executed, storing output in
the staging directory for exfiltration.

Notably, email messages that fail parsing for commands have their IDs cached to avoid repeated parsing, although
the cache is not persisted and it is recreated on each backdoor execution. Emails successfully parsed for commands
are deleted after processing.

Commands

In terms of command capabilities, LunarMail is simpler and features a subset of the commands found in LunarWeb. It
can write a file, create a new process, and uniquely, take a screenshot and modify the C&C communication email
address. While LunarMail lacks separate commands for running shell or PowerShell commands, it does support Lua
scripts. When executed, commands write their output to files in the staging directory.

The full list of supported commands is shown in Table 5.

Table 5. Overview of LunarMail commands

Type Command Details
0 No operation N/A
1 Write file Specifies the file path and content to write.

2
Set the email address
used for C&C
communications

Sets a specific Outlook profile to use for C&C communications. The
profile is specified by an email address, which is then persisted in the
backdoor’s state.

3 Create process and get
output

Creates an arbitrary process with a specified command line,
redirecting its output to the staging directory.

4 Take a screenshot Utilizes GDI+ API to capture the entire screen and produce a JPG
file.

5 Run Lua code Just as in LunarWeb, Lua code is executed using the statically linked
libraries LuaCOM and Lua.

Exfiltrating data – preparation

LunarMail searches its staging directory for output files produced by the backdoor, preparing them for exfiltration by
embedding them in a PNG image or PDF document (depending on the attachment extension in the exfiltration
configuration). Both PNG and PDF files are created using a valid content template.

For PNG files, a template matching the compromised institution’s logo is used, indicating prior knowledge and
preparation of the backdoor. To create a PNG that contains output files, LunarMail first generates a random 32-byte
AES seed, used for encryption. Then it creates IDAT chunks with data and appends them to the PNG template. The
chunks are similar to received commands, containing the following:

Chunk with AES seed – RSA-4096 encrypted, zlib compressed.
Chunk(s) with filename and content – AES-256 encrypted, zlib compressed.

https://github.com/eset/malware-ioc/tree/master/turla#to-the-moon-and-back-doors-lunar-landing-in-diplomatic-missions-indicators-of-compromise
https://learn.microsoft.com/en-us/windows/win32/gdiplus/-gdiplus-gdi-start


10/14

Before compression and encryption, the output file name and content are wrapped into a structure that also contains
a magic string 001035 that could be the backdoor version. Just like in received command PNGs, the created chunks
follow the PNG specification and have their CRC checksum calculated, ensuring a valid image. To finalize the image,
the IEND footer chunk is appended.

The second method, producing a PDF file, uses an encrypted template from the file %TEMP%\l4_mgrT.tmp. We have
not observed this data file and the template’s content is unknown, but probably it is a benign, unsuspicious document.

The output files with metadata are inserted at the end of the last stream in the PDF template, before the terminating
endstream keyword. They are inserted in the following format and order:

1. Output files – variable sized, zlib compressed, AES-256 encrypted.
2. Metadata – fixed size (512 bytes), RSA-4096 encrypted.

The output filename and content are wrapped into the same structure as with the PNG, including the magic string,
which is then compressed and encrypted.

The metadata contains information necessary for parsing and decrypting the structures of output files, including AES
seed and output file positions in the PDF file.

After processing and embedding in the PNG or PDF file, files staged for exfiltration are deleted. The created file
temporarily resides in the staging directory until exfiltration.

Exfiltrating data – transmission

Prepared PNG images or PDF documents containing output files are transmitted as attachments in emails to an
attacker-controlled inbox, as per the exfiltration configuration. The default LunarMail setup includes a specific
recipient email, subject header, message body, and attachment filename. The email content, although in the
language of the compromised European MFA, appears machine translated due to its unnatural phrasing.

An exfiltration configuration from a received command overrides the default one. We have not recovered any
commands so don’t know if different email recipients, subjects, bodies, or attachment name or types are used across
multiple commands.

If supported, the email body uses HTML format. The PNG is embedded as an image in the body, unlike the PDF.
Figure 6 shows an illustration of an exfiltration email based on the default configuration. The email was translated,
redacted, and the logo was changed by ESET Research, to not reveal the compromised institution.

Figure 6. Illustration of an exfiltration email with data hidden in the image

Exfiltration email messages are sent with the PR_DELETE_AFTER_SUBMIT flag. In addition, any sent messages to
the exfiltration address are deleted.

Conclusion

https://learn.microsoft.com/en-us/office/client-developer/outlook/mapi/processing-a-sent-message


11/14

We have described two previously unknown backdoors used in compromises of a European government’s
institutions, which we attribute with medium confidence to the Russia-aligned APT group Turla.

The backdoors share a loader, bear code overlaps, and support similar commands, but they adopt different C&C
communication methods. The first backdoor – LunarWeb – uses HTTP(S) and attempts to blend in by mimicking the
traffic of legitimate services such as Windows Update. The second backdoor – LunarMail – piggybacks on Outlook
and communicates via email messages, using either PNG images or PDF documents to exfiltrate data.

We observed varying degrees of sophistication in the compromises; for example, the careful installation on the
compromised server to avoid scanning by security software contrasted with coding errors and different coding styles
(which are not the scope of this blogpost) in the backdoors. This suggests multiple individuals were likely involved in
the development and operation of these tools.

Although the described compromises are more recent, our findings show that these backdoors evaded detection for a
more extended period and have been in use since at least 2020, based on artifacts found in the Lunar toolset.

IoCs
A comprehensive list of IoCs and samples can be found in our GitHub repository.

Files

SHA-1 Filename Detection Description

DE83C2C3FE68CB1BF961

73E9EE3EA6161DCFB24A App_Web_0bm4blbr.dll MSIL/Agent.ERT

Compiled version of ASP.NET
web page that installs
LunarWeb.

9CEC3972FA35C88DE87B

D66950E18B3E0A6DF77C N/A VBA/TrojanDownloader.


Agent.ZJC
Malicious Word macro that
installs LunarMail.

2ED792E39F7D56DE52BD

F4AED96AFC898478BFDF gpgol.dll Win64/LunarLoader.B LunarLoader (x64) used to load

LunarMail.
F09E36553E48EBD42E60


D9B25A390C0F57FF8DE0 gpgol.dll Win32/LunarLoader.A LunarLoader (x86) used to load
LunarMail.

94A4CE9C75BC847E7BE5

9B96C4133D677D909414 tapiperf.dll Win64/LunarLoader.C LunarLoader (x64) used to load

LunarWeb.

00006B30806F91591134

9D82BEEB1AEB9025ADB4 admpwd.dll Win64/LunarLoader.A

LunarLoader (x64); a trojanized
AdmPwd, used to load
LunarWeb.

19D86CF2ED82EAE23E01

9706FAE8DAFC60552E85 AdmPwd.dll Win64/LunarLoader.A

LunarLoader (x64); a trojanized
AdmPwd, used to load
LunarWeb.

795C4127D42FE8DFAF45

10B406B52BA5BEDE8D3A winnet.dll.mui Win64/LunarLoader.B LunarLoader (x64) used to load

LunarWeb.
754FB657156643FD09A6


8EC9FC124528578CAB0C N/A Win32/LunarWeb.A LunarWeb backdoor (x86).

FCAE66F6D95C78DC8296

88CC0F4C39BB5A57828B N/A Win64/LunarMail.A LunarMail backdoor (x64).

67C6AEC8D129E610378E

F52F8BF934886587932F N/A Win32/LunarMail.A LunarMail backdoor (x86).

4C84110F1B10DF5FDD61

2759E210E44B0F0505EF N/A Win64/LunarWeb.A LunarWeb backdoor (x64).

5D3975E57BDCB630A00F

EBE5D405EEFB6D119D86 N/A Win64/LunarWeb.A LunarWeb backdoor (x64).

5EF771AFC96C24371D36

7448627609CFACB34A57 N/A Win64/LunarWeb.A LunarWeb backdoor (x64).

512E4FA7D6119270FF44

A3B2A2359EE8825392EF N/A Win64/LunarWeb.A LunarWeb backdoor (x64).

File paths

Stage 2 blob

C:\Windows\System32\DynamicAuth.bin

C:\Program Files\LAPS\CSE\admpwd.cache

C:\ProgramData\Microsoft\WinThumb\adcache.clb

C:\Windows\System32\perfcache.dat

%USERPROFILE%\Gpg4win\tempkeys.dat

LunarWeb state file

C:\ProgramData\Microsoft\Windows\Templates\content.tpl

https://github.com/eset/malware-ioc/tree/master/turla#to-the-moon-and-backdoors-lunar-landing-in-diplomatic-missionsindicators-of-compromise


12/14

C:\ProgramData\Microsoft\WinThumb\thumb.clb

C:\ProgramData\Microsoft\WinThumb\cfcache.clb

C:\Windows\System32\perfconfm.dat

LunarMail state file

%LOCALAPPDATA%\Microsoft\Outlook\outlk.share

Network

IP Domain Hosting
provider First seen Details

N/A
thedarktower.av.


master.dns-
cloud[.]net

N/A 2020‑02‑01
Domain (Free DNS)
pinged by malicious
Word macro.

45.33.24[.]145 N/A
Akamai
Connected
Cloud

2020‑05‑20
C&C server of
LunarWeb
(compromised VPS).

45.79.93[.]87 N/A
Akamai
Connected
Cloud

2020‑05‑20
C&C server of
LunarWeb
(compromised VPS).

65.109.179[.]67 N/A Hetzner Online
GmbH 2023‑10‑29

C&C server of
LunarWeb
(compromised VPS).

74.50.80[.]35 N/A
Host
Department NJ,
LLC

2023‑10‑29 C&C server of
LunarWeb.

82.165.158[.]86 N/A IONOS SE 2022‑08‑03
C&C server of
LunarWeb
(compromised VPS).

82.223.55[.]220 N/A IONOS SE 2022‑08‑03
C&C server of
LunarWeb
(compromised VPS).

139.162.23[.]113 N/A
Akamai
Connected
Cloud

2023‑06‑15
C&C server of
LunarWeb
(compromised VPS).

158.220.102[.]80 N/A Contabo GmbH 2023‑10‑29 C&C server of
LunarWeb.

161.97.74[.]237 N/A Contabo GmbH 2023‑06‑15 C&C server of
LunarWeb.

176.57.150[.]252 N/A Contabo GmbH 2023‑06‑15 C&C server of
LunarWeb.

212.57.35[.]174 N/A Webglobe, a.s. 2023‑06‑02
C&C server of
LunarWeb
(compromised VPS).

212.57.35[.]176 N/A Webglobe, a.s. 2023‑06‑02
C&C server of
LunarWeb
(compromised VPS).

Registry keys

HKCU\SOFTWARE\Classes\CLSID\{3115036B-547E-4673-8479-EE54CD001B9D}\

MITRE ATT&CK techniques
This table was built using version 15 of the MITRE ATT&CK framework.

Tactic ID Name Description

Reconnaissance T1591 Gather Victim Org
Information

LunarMail’s communication method
indicates prior knowledge about
compromised institutions.

Resource
Development

T1583.002
Acquire
Infrastructure: DNS
Server

Stage 0 macro pings a domain from
free DNS hosting provided by
ClouDNS.

T1583.003
Acquire
Infrastructure: Virtual
Private Server

Turla has used VPS hosting
providers for C&C servers.

T1584.003
Compromise
Infrastructure: Virtual
Private Server

Turla has used compromised
VPSes for C&C purposes.

T1586.002
Compromise
Accounts: Email
Accounts

Turla has used likely compromised
email accounts for communication
with the LunarMail backdoor.

T1587.001 Develop Capabilities:
Malware

Turla has developed custom
malware, including loaders and
backdoors.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v15/techniques/T1591
https://attack.mitre.org/versions/v15/techniques/T1583/002
https://attack.mitre.org/versions/v15/techniques/T1583/003
https://attack.mitre.org/versions/v15/techniques/T1584/003
https://attack.mitre.org/versions/v15/techniques/T1586/002
https://attack.mitre.org/versions/v15/techniques/T1587/001


13/14

Tactic ID Name Description

Execution

T1047
Windows
Management
Instrumentation

LunarWeb obtains system
information by using WMI queries.

T1059 Command and
Scripting Interpreter

LunarWeb and LunarMail can
execute Lua scripts.

T1059.001
Command and
Scripting Interpreter:
PowerShell

LunarWeb can execute PowerShell
commands.

T1059.003
Command and
Scripting Interpreter:
Windows Command
Shell

LunarWeb can execute shell
commands via cmd.exe.

T1059.005
Command and
Scripting Interpreter:
Visual Basic

Stage 0 Word document contains a
VBA macro.

T1106 Native API LunarWeb and LunarMail use
various Windows APIs.

T1204.002 User Execution:
Malicious File

Stage 0 Word document with
malicious macro must be opened by
victim.

Persistence

T1137.006 Office Application
Startup: Add-ins

LunarMail loader is persisted as an
Outlook add-in.

T1547 Boot or Logon
Autostart Execution

A LunarWeb loader is persisted as a
Group Policy extension.

T1574 Hijack Execution
Flow

A LunarWeb loader is persisted by
replacing the system DLL
tapiperf.dll.

Defense
Evasion

T1027 Obfuscated Files or
Information

LunarWeb and LunarMail are AES-
256 encrypted on disk.

T1027.003
Obfuscated Files or
Information:
Steganography

LunarMail stages exfiltration data
into a PNG image or PDF
document.

T1027.007
Obfuscated Files or
Information:
Dynamic API
Resolution

LunarMail dynamically resolves
MAPI functions.

T1027.009
Obfuscated Files or
Information:
Embedded Payloads

LunarMail installer has payloads
embedded in a DOCX format
document.

T1036.005
Masquerading:
Match Legitimate
Name or Location

Filenames used by LunarWeb and
LunarMail loading chains mimic
legitimate files.

T1070.004 Indicator Removal:
File Deletion

LunarWeb and LunarMail can
uninstall themselves by deleting
their loading chain.

T1070.008 Indicator Removal:
Clear Mailbox Data

LunarMail deletes email messages
used for C&C communications.

T1140 Deobfuscate/Decode
Files or Information

LunarWeb and LunarMail decrypt
their strings using RC4.

T1480.001
Execution
Guardrails:
Environmental
Keying

LunarLoader decrypts its payload
using a key derived from the DNS
domain name.

T1620 Reflective Code
Loading

LunarWeb and LunarMail are
executed using a reflective loader.

Discovery

T1007 System Service
Discovery

LunarWeb retrieves a list of
services.

T1016
System Network
Configuration
Discovery

LunarWeb retrieves network adapter
information.

T1057 Process Discovery LunarWeb retrieves a list of running
processes.

T1082 System Information
Discovery

LunarWeb retrieves system
information such as OS version,
BIOS version, domain name, and
environment variables.

LunarMail retrieves environment
variables.

T1518.001
Software Discovery:
Security Software
Discovery

LunarWeb discovers installed
security solutions via the WMI query
wmic
/Namespace:\\root\SecurityCenter2
Path AntiVirusProduct Get *.

Collection
T1005 Data from Local

System
LunarWeb and LunarMail can
upload files from the compromised
machine.

T1074.001 Data Staged: Local
Data Staging

LunarMail stages data in a directory
in %TEMP%.

T1113 Screen Capture LunarMail can capture screenshots.

https://attack.mitre.org/versions/v15/techniques/T1047
https://attack.mitre.org/versions/v15/techniques/T1059
https://attack.mitre.org/versions/v15/techniques/T1059/001
https://attack.mitre.org/versions/v15/techniques/T1059/003
https://attack.mitre.org/versions/v15/techniques/T1059/005
https://attack.mitre.org/versions/v15/techniques/T1106
https://attack.mitre.org/versions/v15/techniques/T1204/002
https://attack.mitre.org/versions/v15/techniques/T1137/006
https://attack.mitre.org/versions/v15/techniques/T1547
https://attack.mitre.org/versions/v15/techniques/T1574
https://attack.mitre.org/versions/v15/techniques/T1027
https://attack.mitre.org/versions/v15/techniques/T1027/003
https://attack.mitre.org/versions/v15/techniques/T1027/007
https://attack.mitre.org/versions/v15/techniques/T1027/009
https://attack.mitre.org/versions/v15/techniques/T1036/005
https://attack.mitre.org/versions/v15/techniques/T1070/004
https://attack.mitre.org/versions/v15/techniques/T1070/008
https://attack.mitre.org/versions/v15/techniques/T1140
https://attack.mitre.org/versions/v15/techniques/T1480/001
https://attack.mitre.org/versions/v15/techniques/T1620
https://attack.mitre.org/versions/v15/techniques/T1007
https://attack.mitre.org/versions/v15/techniques/T1016
https://attack.mitre.org/versions/v15/techniques/T1057
https://attack.mitre.org/versions/v15/techniques/T1082
https://attack.mitre.org/versions/v15/techniques/T1518/001
https://attack.mitre.org/versions/v15/techniques/T1005
https://attack.mitre.org/versions/v15/techniques/T1074/001
https://attack.mitre.org/versions/v15/techniques/T1113


14/14

Tactic ID Name Description

T1114.001
Email Collection:
Local Email
Collection

LunarMail collects recipients of sent
email messages and can collect
email addresses of Outlook profiles.

T1560.002
Archive Collected
Data: Archive via
Library

LunarWeb and LunarMail use a
statically linked zlib library for
compression of collected data.

Command and
Control

T1001.002 Data Obfuscation:
Steganography

LunarWeb can receive commands
hidden in JPG or GIF images.

LunarMail receives commands
hidden in PNG images and
exfiltrates data hidden in PNG
images or PDF documents.

T1001.003
Data Obfuscation:
Protocol
Impersonation

LunarWeb impersonates legitimate
domains in C&C communications by
using a fake Host header and
known URIs.

T1071.001
Application Layer
Protocol: Web
Protocols

LunarWeb uses HTTP for C&C
communications.

T1071.003
Application Layer
Protocol: Mail
Protocols

LunarMail uses email messages for
C&C communications.

T1090.001 Proxy: Internal Proxy LunarWeb can use an HTTP proxy
for C&C communications.

T1095 Non-Application
Layer Protocol

Stage 0 macro pings the C&C
server, utilizing ICMP protocol.

T1132.001 Data Encoding:
Standard Encoding

LunarWeb may receive base64-
encoded data from the C&C server.

T1573.001
Encrypted Channel:
Symmetric
Cryptography

LunarWeb and LunarMail encrypt
C&C communications using AES-
256.

T1573.002
Encrypted Channel:
Asymmetric
Cryptography

LunarWeb and LunarMail encrypt
the AES key used in C&C
communications using RSA-4096.

Exfiltration

T1020 Automated
Exfiltration

LunarWeb and LunarMail
automatically exfiltrate collected
data to the C&C server.

T1030 Data Transfer Size
Limits

LunarWeb splits exfiltrated data
above 1.33 MB into multiple smaller
chunks.

LunarMail limits the size of email
attachments containing exfiltrated
data.

T1041 Exfiltration Over C2
Channel

LunarWeb and LunarMail exfiltrate
data over the C&C channel.

https://attack.mitre.org/versions/v15/techniques/T1114/001
https://attack.mitre.org/versions/v15/techniques/T1560/002
https://attack.mitre.org/versions/v15/techniques/T1001/002
https://attack.mitre.org/versions/v15/techniques/T1001/003
https://attack.mitre.org/versions/v15/techniques/T1071/001
https://attack.mitre.org/versions/v15/techniques/T1071/003
https://attack.mitre.org/versions/v15/techniques/T1090/001
https://attack.mitre.org/versions/v15/techniques/T1095
https://attack.mitre.org/versions/v15/techniques/T1132/001
https://attack.mitre.org/versions/v15/techniques/T1573/001
https://attack.mitre.org/versions/v15/techniques/T1573/002
https://attack.mitre.org/versions/v15/techniques/T1020
https://attack.mitre.org/versions/v15/techniques/T1030
https://attack.mitre.org/versions/v15/techniques/T1041

