www.trendmicro.com /en_us/research/24/d/earth-freybug.html

Earth Freybug Uses UNAPIMON for Unhooking Critical APIs

:4/2/2024

APT & Targeted Attacks

This article provides an in-depth look into two techniques used by Earth Freybug actors: dynamic-link library (DLL)
hijacking and application programming interface (API) unhooking to prevent child processes from being monitored via
a new malware we’ve discovered and dubbed UNAPIMON.

By: Christopher So April 02, 2024 Read time: 6 min (1633 words)

In the past month, we investigated a cyberespionage attack that we have attributed to Earth Freybug (also known as
a subset of APT41). Earth Freybug is a cyberthreat group that has been active since at least 2012 that focuses on
espionage and financially motivated activities. It has been observed to target organizations from various sectors
across different countries. Earth Freybug actors use a diverse range of tools and techniques, including LOLBins and
custom malware. This article provides an in-depth look into two techniques used by Earth Freybug actors: dynamic-
link library (DLL) hijacking and application programming interface (API) unhooking to prevent child processes from
being monitored via a new malware we’ve discovered and dubbed UNAPIMON.

Background of the attack flow

The tactics, techniques, and procedures (TTPs) used in this campaign are similar to the ones from a campaign
described in an article published by Cybereason. In this incident, we observed a vmtoolsd.exe process that creates a
remote scheduled task using schtasks.exe. Once executed, this launches a pre-deployed cc.bat in the remote
machine.

1/7

https://www.trendmicro.com/en_us/research/24/d/earth-freybug.html
https://undefined/en_us/research/21/h/apt41-resurfaces-as-earth-baku-with-new-cyberespionage-campaign.html
https://www.cybereason.com/blog/operation-cuckoobees-a-winnti-malware-arsenal-deep-dive

vmtoolsd.exe @

Scheduled task no. 1

executes

cc.bat #1

Reconnaissance:
Gathers victim host
information

gathers
system
info to

creates

Execution:
Scheduled task/job

!
A

—

Scheduled task no. 2

executes

Privilege
escalation: DLL
side-loading

copied by
hdr.bin cc.bat #2
copies
copied to hdr.bin restarts

15}

Hacker

Figure 1. Earth Freybug attack chain
download

C:

omd.exe

starts

to

\

TSMSISrvdll

ldrops

-6

Command and
control

SessionEnv
service

injected to

_{random}.dll
{UNAPIMON}

injected to

Defense evasion

vmtoolsd.exe is a component of VMware Tools called VMware user process, which is installed and run inside a guest

virtual machine to facilitate communication with the host machine. Meanwhile, schtasks.exe is a component of
Windows called Task Scheduler Configuration Tool, which is used to manage tasks in a local or remote machine.

Based on the behavior we observed from our telemetry, a code of unknown origin was injected in vmtoolsd.exe that
started schtasks.exe. It's important to note that both vmfoolsd.exe and schtasks.exe are legitimate files. Although the

origin of the malicious code in vmtoolsd.exe in this incident is unknown, there have been documented infections

wherein vulnerabilities in legitimate applications were exploited via vulnerable external-facing servers.

SCHTASKS /Create /S

/5C ONCE /TN test /TR C:\Windows\SEeEPANSaMsEIY /ST 21:85:88 fRU SYSTEM

Figure 2. Command line for executing the Task Scheduler Configuration Tool.

download

First cc.bat for reconnaissance

Once the scheduled task is triggered, a previously deployed batch file, %System%/\cc.bat, is executed in the remote

machine. Based on our telemetry, this batch file launches commands to gather system information. Among the

commands executed are:

e powershell.exe -command "Get-NetAdapter |select InterfaceGuid"

e arp -a

2/7

https://undefined/content/dam/trendmicro/global/en/research/24/c/earth-freybug-uses-unapimon-for-unhooking-critical-apis/Fig1-Earth%20Freybug.png
https://undefined/content/dam/trendmicro/global/en/research/24/c/earth-freybug-uses-unapimon-for-unhooking-critical-apis/Fig2-Earth%20Freybug.png

e ipconfig /all

e fsutil fsinfo drives

e query user

e net localgroup administrators
o systeminfo

o whoami

e netstat -anb -p tcp

e net start

o tasklist /v

e net session

e net share

e net accounts

e net use

e net user

e net view

e net view /domain

e net time \\127.0.0.1

e net localgroup administrators /domain
e wmic nic get "quid"

The system information gathered via these commands is gathered in a text file called %System%!\res.txt.

Once this is done, another scheduled task is set up to execute %Windows%\Installer\cc.bat in the target machine,
which launches a backdoor.

Second cc.bat hijacking for DLL side-loading

The second cc.bat is notable for leveraging a service that loads a nonexistent library to side-load a malicious DLL. In
this case, the service is SessionEnv. A detailed technical description of how this technique works can be found here.
In this technique, this second cc.bat first copies a previously dropped % Windows%\Installer\hdr.bin to
%System%\TSMSISrv.DLL. It then stops the SessionEnv service, waits for a few seconds, then restarts the service.
This will make the service load and execute the file %System%\TSMSISrv.DLL.

Two actions of interest done by TSMSISrv.DLL are dropping and loading a file named Windows%_{5 to 9 random
alphabetic characters}.dll and starting a cmd.exe process in which the same dropped DLL is also injected. Based on
telemetry data, we noticed that this instance of cmd.exe is used to execute commands coming from another machine,
thus turning it into a backdoor. We dubbed the dropped DLL loaded in both the service and cmd.exe as UNAPIMON.

Introducing UNAPIMON for defense evasion

An interesting thing that we observed in this attack is the use of a peculiar malware that we named UNAPIMON. In its
essence, UNAPIMON employs defense evasion techniques to prevent child processes from being monitored, which
we detail in the succeeding sections.

Malware analysis

UNAPIMON itself is straightforward: It is a DLL malware written in C++ and is neither packed nor obfuscated; it is not
encrypted save for a single string.

At the DIlIMain function, it first checks whether it is being loaded or unloaded. When the DLL is being loaded, it
creates an event object for synchronization, and starts the hooking thread.

As shown in Figure 3, the hooking thread first obtains the address of the function CreateProcessW from kernel32.dll,
which it saves for later use. CreateProcessW is one of the Windows API functions that can be used to create a

3/7

https://posts.specterops.io/lateral-movement-scm-and-dll-hijacking-primer-d2f61e8ab992

process. It then installs a hook on it using Microsoft Detours, an open-source software package developed by
Microsoft for monitoring and instrumenting API calls on Windows.

.text:e000000180001650 hooking_thread proc near C ing_threadio
.text:0e8020201380801650

.text:2020020180201650 sub rsp, 28h

.text:eoeeeeeleeeeless mov rcx, cs:hEvent ; hHandle
.text:@0eeee01800016586 or edx, @Fi FFFh ; dwMilliseconds
Jtext:000200018000165E call cs:WaitForSingleObject
Ltext:eeeeeeelse8e1664

Jtext:ege0eeliepaless ; Get address of CreateProcessi
Jtext:eeeee88l18e8a1664 lea rcx, szKernel32 ; "kernel32”

.text : 00000e0150081668 call cs:GetModuleHandleA
.text:0eeeeee1iesale’l lea rdx, szCreateProcessW ; "CreateProcessW”
.text: 2PE0080180881678 mov rcx, rax 3 hModule
text:00808868180881678 call cs:GetProcAddress

text:oeeeee2e132001681 mov cs:CreateProcessh, rax

text: 0002020130001 688 test rax, rax

.text:0000000180001686 jz short done

Ltext:eeee2ee818088168D0

Jtext:0eeeeeelsepalssd 3 Hook using Detours

.text:200000018000168D call DetourTransactionBegin
.text:2000200180081692 call ¢s:__imp_GetCurrentThread
Jtext:0epe0eelieale9s mov rcx, rax 3 hThread
.text:00C0200130001696 call DetourlUpdateThread
.text:00000801358881648 lea rdx, hook CreateProcessW ; Hook function
text:0eeeeee1800816A7 lea rcx, CreateProcessh ; Original functicn
.text:pe082001300@16AE call DetourAttach

text:080888150881683 call DetourTransactionCommit
Jtext:2eeeeee1800016E838

Jtext:0eeeeeeliepdless done: ; CODE XREF: hooking_thread+3Btj
.text:00200001800016E88 mov rcx, cs:hEvent ; hObject
Jtext:00020021800016BF call cs:CloseHandle

Jtext:eeee0eeliepalecs MoV csihEvent, @

Jtext:oofebeeliopaleDe xor eax, eax

.text:0ee0e20130081602 add rsp, 28h

.text:ecepceeliedaleDe retn

.text:eoeeeee18ee016D06 hooking_thread endp
Figure 3. Hooking thread disassembly
download

This mechanism redirects any calls made to CreateProcessW from a process where this DLL is loaded to the hook.

The hook function calls the original CreateProcessW using the previously saved address to create the actual process
but with the value CREATE_SUSPENDED (4) in the creation flags parameter. This effectively creates the process,
but whose main thread is suspended.

Ltext:B0080015880157A ; Call original CreateProcessh

Ltext: 0808001586801 57A mov rax, [rsp+58h+lpstartupInfo]
text:0000080150001532 mow rled, [rsp+58h+dwCreationFlags]
text:BeeRRER1ERRE158A mov rsi, [rsp+58h+lpProcessInformation)
text:oaepaeelseealsa2 mov [rsp+48h], rsi ; lpProcessInformation
Ltext:B0866001836681597 mov [rsp+a@h], rax ; lpStartupInfo
Ltext:000008015000159C mov rax, [rsp+58h+lpCurrentDirectory]
text:peesRe01500815A4 mow [rsp+38h], rax ; lpCurrentDirectory
text:pa20020130881540 mov rax, [rsp+58h+lpEnvironment]
text:esaeeealseeBl561 add rled, CREATE_SUSPENDED
Ltext:080800150001565 mov [rsp+3@h], rax ; lpEnvironment
text:0eea0801500815BA mow eax, [rsp+58h+bInheritHandles]
Jtext:oaepeel308815C1 mov [rsp+28h], rled ; dwCreationFlags
Ltext: 200000018008015C6 mov [rsp+28h], eax ; bInheritHandles
Ltext: 000008015008 15CA call cs:CreateProcessu

Ltext:eeaeae0 1366061506 mov ebx, eax

LTextrepepagalieralsD2 test eax, eax

Jtext:oeecaeelieaalsha jz short done

Figure 4. Calling “CreateProcessW” with “CREATE_SUSPENDED”

download

It then walks through a list of hardcoded DLL names as shown in Figure 5.

47

https://undefined/content/dam/trendmicro/global/en/research/24/c/earth-freybug-uses-unapimon-for-unhooking-critical-apis/Fig3-Earth%20Freybug.png
https://undefined/content/dam/trendmicro/global/en/research/24/c/earth-freybug-uses-unapimon-for-unhooking-critical-apis/Fig4-Earth%20Freybug.png

.data:eea20081388: a8 dll_list dg offset aNtdllDll "ntdll.dll”
.data: 00688881800 8 dg offset alser32D11 ; "user32.d11”
.data: 0620801800 @ dg offset akKernel32D1ll_ @ ; "kernel32.dI11"
.data: eeBaeeRa1308: 8 dg offset akKernelbaseDll ; "KernelBase.dll"”
.data:eeE28081308: a@ dg offset aMswvcrtDll 3 "msvert.dll”
.data:eea208081800174E8 dgq offset aUrlmonDll ; "urlmon.dll”
.data:eea20801808174F0 dg offset aWs232011 ; "ws2_32.d11"
.data:ee008001300174F3 dg offset aSechostDll 3 "SecHost.dll"
.data:eRReERE130017500 dg offset aCombaseDll 3 "comBase.dll”
.data:eea0080180017503 dg offset aWininetDll "wininet.dll"
.data:eeae68868186817516 dg offset aSspiclipll ; "sspicli.d1l”
.data:ee0800130017513 dg offset a0leaut32D1l @ ; "OLEaut32.dll"
.data:epBeeR8136017528 dg offset afAdvapiz2Dll & ; "advApiz2.dll”
.data:eeE2808130817523 dg offset aCrypt32D11 3 "orypt32.dll”
.data:eeae8868186817530 dg offset a0le32D11 ; "ole32.d11”
.data:eea2880130817533 dg offset aOleaut32D11 ; "OLEAUT3IZ.d1L"
.data: eppeea8186017548 dg offset aIphlpapiDll ; "IPHLPAPIL.d1l"
.data:eeE2808130017543 dg offset als232D11 3 "ws2_32.d11"
Figure 5. List of DLL names

download

For each DLL in the list that is loaded in the child process, it creates a copy of the DLL file to %User Temp%\ {5 to 9
random alphabetic characters}.dll (hereafter to be referred to as the local copy), which it then loads using the API
function LoadLibraryEx with the parameter DONT_RESOLVE _DLL REFERENCES (1). It does this to prevent a
loading error as described in this article.

// Copy and load file

cstr_filename_2 = (const char *)}&s_filename;
if (s_filename.capacity »>= @x1@)
cstr filename 2 = s filename.ptr.ptr;
y_name = std::istring::cstr{copy_name);
success = CopyFileA(cstr_filename_2, cstr_copy_name, @);
if { success)
1
load_d1l_copy:
cstr_newcopynamel = std::string::cstr{copy_name});
htodule = LoadLibraryExA({cstr_newcopynamel, NULL, DONT_RESOLVE_DLL_REFERENCES);
*phtodule = hModule;
Figure 6. Copy and load DLL

download

After the local copy of the DLL has been loaded, it then proceeds to create a local memory copy of the loaded DLL
image with the same name in the child process. To ensure that the two DLLs are the same, it compares both the
values of the checksum field in the headers and the values of the number of name pointers in the export table.

Once verified to be identical, it walks through all exported addresses in the export table. For each exported address, it
checks to ensure that the address points to a code in an executable memory page, and that the starting code has
been modified. Specifically, it checks if the memory page protection has the values PAGE_EXECUTE (0x10),

PAGE _EXECUTE_READ (0x20), or PAGE_EXECUTE_READWRITE (0x40). Modifications are detected if the first
byte in the exported address is either 0XE8 (CALL), OXxE9 (JMP), or if its first two bytes are not equal to the
corresponding first two bytes in the loaded local copy. Additionally, it also verifies that the name of the exported
address is not RtINtdlIName, which contains data instead of executable code.

.text:0080080188082D014 check if hooked: ; CODE XREF: get_to_patch+1F21j
.text:e080800182002014 movzx eax, byte ptr [rsi] ; remote export address
Ttext:eeeeeeelseea2Dl? cmp al, eEgh ; & 3 CALL

text:eee000e150082019 jz short addr_is_hooked

.text:bo000001820020185 cmp al, 8Esh ; "é' ; IMP

.text:eeeeeeelseea2Dll jz short add hooked

Ltext: eee0e0e13000201F cmp al, [rbx] ; Local 1st byte
text:ooeeecelsesazn2l jnz short addr_is_hooked

.text:ooeeeeelsee02023 movzx eax, byte ptr [rbx+l] ; Local 2nd byte
.text:eeeeeeelseee2027 cmp [rsi+l], al

Ltext:0eeeep13000202A jz check_next_addr

.text:eoceeeeelsecaD3e

.text:00000080180002030 addr_is_hooked ; CODE XREF: get_to_patch+2891]

5/7

https://undefined/content/dam/trendmicro/global/en/research/24/c/earth-freybug-uses-unapimon-for-unhooking-critical-apis/Fig5-Earth%20Freybug.png
https://devblogs.microsoft.com/oldnewthing/20050214-00/?p=36463
https://undefined/content/dam/trendmicro/global/en/research/24/c/earth-freybug-uses-unapimon-for-unhooking-critical-apis/Fig6-Earth%20Freybug.png

Figure 7. Exported address checking
download

If an exported address passes these tests, it is added to a list for unpatching.

Once all the DLL names in the list have been processed, it walks through each of the addresses in the unpatching
list. For each address, it copies 8 bytes from the loaded local copy (the original) to the remote address, which has
been previously modified. This effectively removes any code patches applied to an exported address.

for (= -> _Mypair._Myval2._ Myhead-»>_MNext; I= -»_Mypair._Myval2._Myhead; = i->_Next)
{
= 5i64;
= & [i-»rva];
if ((, & , & , PAGE_EXECUTE_READWRITE, & y<e)
break;
if ((» & [i-»>rva], i->buffer, 8iB4, & Yyor=0)
S H
(, & , & , + &);

Figure 8. Unpatching loop
download

Finally, it unloads and deletes the randomly named local copy of the DLL and resumes the main thread. When the
malware is unloaded, it removes the hook from CreateProcessW.

Impact

Looking at the behavior of UNAPIMON and how it was used in the attack, we can infer that its primary purpose is to
unhook critical API functions in any child process. For environments that implement API monitoring through hooking
such as sandboxing systems, UNAPIMON will prevent child processes from being monitored. Thus, this malware can
allow any malicious child process to be executed with its behavior undetected.

A unique and notable feature of this malware is its simplicity and originality. Its use of existing technologies, such as
Microsoft Detours, shows that any simple and off-the-shelf library can be used maliciously if used creatively. This also
displayed the coding prowess and creativity of the malware writer. In typical scenarios, it is the malware that does the
hooking. However, it is the opposite in this case.

Security recommendations

In this specific Earth Freybug attack, the threat actor used administrator accounts, which means that the threat actors
knew the admin credentials, rendering group policies useless. The only way to prevent this from happening in an
environment is good housekeeping, which involves frequent password rotation, limiting access to admin accounts to
actual admins, and activity logging.

In this incident, data exfiltration was done using a third-party collaborative software platform over which we do not
have control. Even if the write permissions were revoked for affected folders that could be accessed through the
collaborative software, the threat actor could just simply override it, since the threat actor is the admin from the
system’s point of view.

Users should restrict admin privileges and follow the principle of least privilege. The fewer people with admin
privileges, the fewer loopholes in the system malicious actors can take advantage of.

Conclusion

Earth Freybug has been around for quite some time, and their methods have been seen to evolve through time. This
was evident from what we observed from this attack: We concluded that they are still actively finding ways to improve
their techniques to successfully achieve their goals.

6/7

https://undefined/content/dam/trendmicro/global/en/research/24/c/earth-freybug-uses-unapimon-for-unhooking-critical-apis/Fig7-Earth%20Freybug.png
https://undefined/content/dam/trendmicro/global/en/research/24/c/earth-freybug-uses-unapimon-for-unhooking-critical-apis/Fig8-Earth%20Freybug.png

This attack also demonstrates that even simple techniques can be used effectively when applied correctly.
Implementing these techniques to an existing attack pattern makes the attack more difficult to discover. Security

researchers and SOCs must keep a watchful eye not only on malicious actors’ advanced techniques, but also the
simple ones that are easily overlooked.

Indicator of compromise

Hash Detection name

62ad0407a9cce34afb428dee972292d2aa23c78cbc1a44627cb2e8b945195bc2|Trojan.Win64.UNAPIMON.ZTLB

7/7

