
1/10

lab52.io
/blog/pelmeni-wrapper-new-wrapper-of-kazuar-turla-backdoor/

Pelmeni Wrapper: New Wrapper of Kazuar (Turla Backdoor)
Er1c_C, 3722304989, Dex ⋮

Turla is an APT group allegedly linked to the intelligence service FSB (Federal Security Service) from the Russian
Federation. This threat actor is specifically in the Center 16 unit, which carries out the collection of radio-electronic
intelligence on communications facilities. Moreover, the Center 16 is in charge of intercepting, decrypting and
processing the electronic message and the technical operation of compromising foreign targets.  

Turla’s activity dates back as far as 2004. This actor often carries out exploitation campaigns against organizations
from the former Soviet Union countries. Turla usually targets organizations from several sectors as: governments,
research centers, embassies, energy, telecommunications and pharmaceutical among other sectors. 

This research has resulted in a set of samples which have been found in VirusTotal during early 2024. Below is a
timeline of the publicly known samples.

Samples timeline

In particular, in this article, one of the samples used in one of the latest campaigns (sample #6). This investigation
reveals how Turla is using a new wrapper of Kazuar as part of their infection chain. The most prominent aspects
of the analysis leading to the extraction of Kazuar and the peculiarities of the identified sample compared to others
previously seen in the field are detailed below. 

Infection Chain
As will be detailed later, the attack is quite targeted, so it is possible that the actors have deposited this piece of
malware on the computer after a previous infection. 

In order to hide the malware, the actors make use of the Sideload DLL technique, spoofing legitimate libraries related
to “SkyTel“, “NVIDIA GeForce Experience“, “vncutil” or “ASUS“. 

Pelmeni Wrapper’s structure

As a result, when the legitimate application is executed, the malicious Dll (We’ve dubbed it Pelmeni Wrapper) is
loaded  and the infection continues. The resulting infection chain would be as follows :

https://lab52.io/blog/pelmeni-wrapper-new-wrapper-of-kazuar-turla-backdoor/


2/10

Infection chain

For the analysis we will use the most recent sample we have found in public sources, where it has up to 39
detections.

LaunchGFExperienceLOC.dll 15f5e4808549ff67a79f84e23659da912ebbc1dc7c7b100c12b72384a27e412a

Pelmeni Wrapper’s detections

The DLL does not provide much information since most of its content is encrypted. The most interesting thing is the
name of its exported functions  that appear to be randomly generated.

Pelmeni Wrapper’s exports

Pelmeni Wrapper (Wrapper DLL)
Through the analysis of LaunchGFExperienceLOC.dll, we see at the EntryPoint, 3 main functions that will guide the
program. 



3/10

Pelmeni Wrapper’s entry point

The first function “PrintLog” is in charge of creating a file in the %TEMP% folder that prints what it is doing. This file
has a random name and extension, decoded using an XOR algorithm. 

XOR decryption function

At this point it would print “DLL_PROCESS_ATTACH” because the executable has  loaded the DLL. 

Pelmeni Wrapper’s log file

The next EntryPoint function is “LoadFunction” which is responsible for executing one of the exported DLL
functions. 

“LoadFunction” function

To decrypt the function name, the malware uses a hash generated by the victim’s “ComputerName” xored by a
constant. The algorithm used to hash the computer name is Jenkins’ one_at_a_time. This hash will be used as a
seed in the pseudorandom number generator algorithm ranqd1. The generated values will be used to decrypt the
function name. 

Jenkin’s one_at_a_time algorithm

https://gist.github.com/lastguest/%20235cbf7d9f5cf97abb79


4/10

The execution continues with the “Wvoouo” method that goes through all the threads of the running process and
suspends them, except for the current thread. After this, Pelmeni prints “After CSPT” in the log, which could be a
reference to “Check Suspend Threads”. 

“Wvoouo” function managing threads

After this the program executes “LoadFunctions” which loads and executes 3 functions as before.

Load 3 new functions

In the first function “Gcqiprj” we can see how, by means of CreateThread(), it creates a thread that will continue with
the execution of the wrapper.  



5/10

“Gcqiprj” function creating thread

However, instead of executing that part of the code, it saves its address (0x703C1785) to later redirect the execution
flow to it.

“Gcqiprj” function saving execution address

The next function ”Urjhmeuo” accesses the contents of that address (0x703C1785) and copies the entire contents to
another memory space, which it will execute. In addition, it adds the instruction “push eax” (0x50 x56) at the
beginning to keep the state of the stack correctly. of the stack. 



6/10

“Urjhmeuo” function copying memory to make it executable

The last function “Rgdpeyg” traces the execution stack to find the “LoadLibrary” function and load the new address,
to completely change the execution flow. Finally, Pelmeni prints in the log file “After EFD” which could stand for
“Execution Flow Deviation”. 

“Rgdpeyg” function redirecting the execution flow

At this point, the malware will execute the thread it had previously prepared. This thread will decrypt a .NET assembly
and execute it from memory. Additionally, while Pelmeni runs .NET in the background, it checks the connection by
making requests to Google.



7/10

dotNET binary execution thread

As seen the attack is totally targeted, as if the malware is executed on an other machine, it will not be able to
continue the infection. Fortunately, the algorithm used to to decrypt the payload and the one used to decrypt the
exports is the same, which makes it vulnerable to brute force attacks.

The following section describes the analysis of the .NET binary extracted.

Kazuar (DotNET)
Analyzing the code, we observe that it is obfuscated and encrypted. The algorithm used is a substitution algorithm
reminiscent of the one used by Kazuar (Turla backdoor). The hypothesis is confirmed when comparing our sample
with the sample analyzed in the Unit42 article.

https://unit42.paloaltonetworks.com/pensive-ursa-uses-%20upgraded-kazuar-backdoor/).


8/10

CaesarCipher implementation

Kazuar is a mutiplatform trojan used by Turla and discovered in 2017, it is often seen in infections targeting
specific objectives, with the sample tailored to the targeted entity.

Considering the Unit42 article, in this case the backdoor shows two differences detailed bellow:

New protocol used for exfiltration
Different log’s folder

Exfiltration methods
Up to now, it was publicly known that Kazuar supports 5 protocols for exfiltration. The version of Kazuar described
here allows the exfiltration of data using socket.

Exfiltration protocols

Socket protocol

Based on this, it wouldn’t be unreasonable to think that other variations of this sample might also include additional
protocols.

Log’s folder

Another variation in this sample compared to previous reports is the directory used for logs, as shown in the following
image.

Kazuar’s log file

However, this should be considered a minor variation that could be seen in other samples.

Conclusions
This article analyzes a new sample used in Turla campaigns. The sample employs a wrapper that we’ve nicknamed
Pelmeni, and deploys the Kazuar malware, with some peculiarities different from those seen in previous articles
about this type of sample.



9/10

There are samples of the malware available in public sources, although their content is encrypted, which can hinder
identification. In the case at hand, the differences of this new threat are shown, and indicators of compromise are
provided to aid in its possible detection.

Additionally, in the IOCs summary, the IOCs values highlighted during this post are included. But, also, the hashes for
the samples used in the “samples timeline” are provided.

IOCs
Sample #6 [13/02/2024]

LaunchGFExperienceLOC.dll
(Pelmeni Wrapper) 15f5e4808549ff67a79f84e23659da912ebbc1dc7c7b100c12b72384a27e412a   

Relapsed.exe 

(Kazuar) 7ae9768b79a6b75f814a1b7afaf841b1a4b7ba803b3d806823e81d24a84fd078   

Pelmeni Wrapper’s log file %TEMP%\dbtesdnni.wic 

Kazuar folders

C:\\ProgramData\\utils\\drivers\\data
C:\\ProgramData\\inp\\test

Sample #5 [28/01/2024]

asio.dll (Pelmeni
Wrapper) cccd6327dd5beee19cc3744b40f954c84ab016564b896c257f6871043a21cf0a 

Sobroutine.exe
(Kazuar) 6559d6cb2976334776ded3e7f8ce781c0e6fbaa69edbb0f16b902d06b5d8d8d9 

Pelmeni Wrapper’s log file %TEMP%\iiuiajmujrca.zso 

Sample #4 [27/01/2024]

vncutilLOC.dll
(Pelmeni
Wrapper)

2164d54c415b48e906ad972a14d45c82af7cab814c6cf11729a994249690ed97  

Humanity.exe
(Kazuar) 564b2a3083e55933e4ce68b87c5e268c88d58f7ab41839e5a6e0c728a58e9cf2   

Pelmeni Wrapper’s log file %TEMP%\ktynlijyog.dyg 

Sample #3 [27/01/2024]

SkyTelLOC.dll
(Pelmeni
Wrapper)

00256c7fd9a36c6a4805c467b15b3a72dbac2e6dbd12abe7d768f20ce6c8f09f  

Inroad.exe
(Kazuar) 1a3cc19345737bc76bcf61005ad6afeeea78540bddc627db052cede7a4c0d8e5  

Pelmeni Wrapper’s log file %TEMP%\oayvonjwivaq.vjg 

Sample #2 [27/01/2024]

vncutilLOC.dll
(Pelmeni Wrapper) ebf10222bdd19bd8f14b7e94694c1534d4fe1d1047034aee7ffe9492cad4a92f 

Denigrating.exe
(Kazuar) c91891c297971f46c470ea3b1934e5fb76f683776ba3edcdc1afe4f5398fc016 

Pelmeni Wrapper’s log file %TEMP%\jecvxqyvdbri.olc 

Sample #1 [23/01/2024]

vncutilLOC.dll 9b97e740b65bc609210f095cd9407c990a9f71f580f001ea07300228c5256d62 



10/10

(Pelmeni Wrapper)
Arches.exe
(Kazuar) 0e8cedf69e0708f77b8d8c7c9b96bf9386f0ec66c48b973bfa9718915ed260e9 

Pelmeni Wrapper’s log file %TEMP%\wcijgmcpyn.ctl 

C2

hxxps://altavista[.]rs/wp-includes/ID3/PerceptionSimulation/ 
hxxps://m6front.sam-maintenance[.]com/wp-includes/customize/assembly/ 
hxxps://bibliotecaunicef[.]uy/catalog/notices/tags/ 
wss://127.0.0.1:20089/Test


